首页> 外文期刊>Quality Control, Transactions >Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification
【24h】

Variable Convolution and Pooling Convolutional Neural Network for Text Sentiment Classification

机译:文本情绪分类的可变卷积与汇集卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

With the popularity of the internet, the expression of emotions and methods of communication are becoming increasingly abundant, and most of these emotions are transmitted in text form. Text sentiment classification research mainly includes three methods based on sentiment dictionaries, machine learning and deep learning. In recent years, many deep learning-based works have used TextCNN (text convolution neural network) to extract text semantic information for text sentiment analysis. However, TextCNN only considers the length of the sentence when extracting semantic information. It ignores the semantic features between word vectors and only considers the maximum feature value of the feature image in the pooling layer without considering other information. Therefore, in this paper, we propose a convolutional neural network based on multiple convolutions and pooling for text sentiment classification (variable convolution and pooling convolution neural network, VCPCNN). There are three contributions in this paper. First, a multiconvolution and pooling neural network is proposed for the TextCNN network structure. Second, four convolution operations are introduced in the word embedding dimension or direction, which are helpful for mining the local features on the semantic dimensions of word vectors. Finally, average pooling is introduced in the pooling layer, which is beneficial for saving the important feature information of the extracted features. The verification test was carried out on four emotional datasets, including English emotional polarity, Chinese emotional polarity, Chinese subjective and objective emotion and Chinese multicategory. Our apporach is effective in that its result was up to 1.97 & x0025; higher than that of the TextCNN network.
机译:随着互联网的普及,情绪的表达和沟通方法变得越来越丰富,大多数这些情绪以文本形式传播。文本情绪分类研究主要包括三种基于情绪词典,机器学习和深度学习的方法。近年来,许多基于深度学习的作品已经使用Textcnn(文本卷积神经网络)来提取文本情绪分析的文本语义信息。但是,Textcnn仅在提取语义信息时考虑句子的长度。它忽略了字向量之间的语义特征,并且仅在不考虑其他信息的情况下考虑池化层中的特征图像的最大特征值。因此,在本文中,我们提出了一种基于多种卷积和汇集文本情绪分类的卷积神经网络(可变卷积和汇集卷积神经网络,VCPCNN)。本文有三个贡献。首先,提出了一种用于TextCNN网络结构的多币和池神经网络。其次,在嵌入维度或方向上引入了四个卷积操作,这有助于在字向量的语义尺寸上挖掘本地特征。最后,在池层中引入了平均池,这是有利于节省提取特征的重要特征信息。验证测试是在四个情绪数据集中进行的,包括英语情绪极性,中国情绪极性,中国主观和客观情感和中国多语言。我们的Apporach是有效的,其结果高达1.97&X0025;高于TextCNN网络的网络。

著录项

  • 来源
    《Quality Control, Transactions》 |2020年第2020期|16174-16186|共13页
  • 作者单位

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China;

    South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Text sentiment classification; deep learning; CNN;

    机译:文本情绪分类;深入学习;CNN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号