首页> 外文期刊>Quality Control, Transactions >Ambient Light Based Hand Gesture Recognition Enabled by Recurrent Neural Network
【24h】

Ambient Light Based Hand Gesture Recognition Enabled by Recurrent Neural Network

机译:通过经常性神经网络实现的环境光的手势识别

获取原文
获取原文并翻译 | 示例

摘要

As an essential requirement of pervasive smart devices, free hand gestural input considered as necessary for user interactions has attracted lots of research attention for nearly decades. Nevertheless, existing proposals heavily rely on either expensive pre-deployed equipment or user on-body sensors, thus confine their application scenarios. In this paper, we propose a novel hand gesture recognition system which purely relies on ubiquitous ambient light and low-cost photodiodes. The proposed system does not need any modification to existing lighting infrastructure. While without complex signal pre-processing for modulated light, very low-cost photodiodes and processors can capture and process the light variations caused by hand gesture. To produce accurate hand gesture recognition, we design efficient algorithms based on recurrent neural network to process sensing data collected by a photodiode array. We implement a prototype consisting of an array of 8 photodiodes and extensive experiments demonstrate that the proposed solution can achieve a very high overall recognition accuracy of 99.31 & x0025;.
机译:作为普遍智能设备的基本要求,根据用户交互所考虑的免费手势投入引起了几十年的近几年的研究项。尽管如此,现有的提案依赖于昂贵的预部署设备或用户身体传感器,因此请限制其应用方案。在本文中,我们提出了一种新型手势识别系统,纯粹依赖于普遍存在的环境光和低成本光电二极管。建议的系统不需要对现有的照明基础设施进行任何修改。虽然没有复杂的信号预处理的调制光,但非常低成本的光电二极管和处理器可以捕获和处理由手势引起的光变化。为了产生准确的手势识别,我们基于经常性神经网络设计高效算法,以处理光电二极管阵列收集的感测数据。我们实现了由8个光电二极管的阵列组成的原型,并且广泛的实验表明,所提出的解决方案可以实现99.31&X0025的非常高的整体识别准确度;

著录项

  • 来源
    《Quality Control, Transactions》 |2020年第2020期|7303-7312|共10页
  • 作者单位

    Sichuan Univ Coll Comp Sci Chengdu 610065 Peoples R China;

    Sichuan Univ Coll Comp Sci Chengdu 610065 Peoples R China;

    Sichuan Univ Coll Comp Sci Chengdu 610065 Peoples R China|Sichuan Univ Inst Ind Internet Res Chengdu 610065 Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 211106 Peoples R China;

    Sichuan Univ Coll Comp Sci Chengdu 610065 Peoples R China|Sichuan Univ Inst Ind Internet Res Chengdu 610065 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visible light sensing; recurrent neural network; hand gesture recognition;

    机译:可见光感应;经常性神经网络;手势识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号