首页> 外文期刊>Quality Control, Transactions >Automatic Face Recognition Based on Sparse Representation and Extended Transfer Learning
【24h】

Automatic Face Recognition Based on Sparse Representation and Extended Transfer Learning

机译:基于稀疏表示和扩展转移学习的自动人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation has exhibited excellent performance in face recognition. However, this method requires some areas for improvement, especially on insufficient face samples. We aim to design a simple and efficient method to improve sparse representation to solve problems with a small sample size. This paper provides two primary contributions that are very effective in small sample face recognition. First, in order to enhance recognition robustness, we designed an intuitive and mathematically controllable transfer learning method of sparse representation by introducing labeled samples. Second, to obtain high recognition accuracy, we developed a weighted fusion scheme to integrate the sparse representation results generated from original and labeled samples. In the ORL dataset, our algorithm's highest accuracy rate is 95%. In the FERET dataset, our highest classification accuracy rate is 95%. In the more complex LFW dataset, our highest classification accuracy rate has also reached 83.33%. This shows that our experimental results demonstrate that the proposed method can obtain sufficient performance, whereas the weighted fusion scheme can take advantage of sparse representation on the basis of original and labeled samples. This paper will be very useful for identification based on the Internet-of-Medical-Things.
机译:稀疏表示在面部识别中表现出出色的性能。但是,此方法需要改进一些地方,尤其是在面部样本不足的情况下。我们旨在设计一种简单有效的方法来改善稀疏表示,以解决小样本量的问题。本文提供了两个主要贡献,它们在小样本人脸识别中非常有效。首先,为了增强识别的鲁棒性,我们通过引入标记样本设计了一种直观且数学上可控的稀疏表示的转移学习方法。其次,为了获得较高的识别精度,我们开发了一种加权融合方案,以整合从原始样本和标记样本生成的稀疏表示结果。在ORL数据集中,我们算法的最高准确率是95%。在FERET数据集中,我们的最高分类准确率是95%。在更复杂的LFW数据集中,我们的最高分类准确率也达到了83.33%。这表明我们的实验结果表明,提出的方法可以获得足够的性能,而加权融合方案可以在原始和标记样品的基础上利用稀疏表示的优势。这篇论文对于基于医学物联网的识别将非常有用。

著录项

  • 来源
    《Quality Control, Transactions》 |2019年第2019期|2387-2395|共9页
  • 作者单位

    Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China;

    Qingdao Univ, Sch Elect Informat, Qingdao 266071, Peoples R China;

    Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China;

    Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China;

    Fudan Univ, Sch Microelect, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China;

    Harbin Inst Technol, Dept Comp Sci & Engn, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Face recognition; image representation; knowledge transfer; pattern recognition;

    机译:人脸识别;图像表示;知识转移;模式识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号