首页> 外文期刊>Quality and Reliability Engineering International >Remaining useful life prediction of lithium-ion battery using a novel health indicator
【24h】

Remaining useful life prediction of lithium-ion battery using a novel health indicator

机译:使用新型健康指标剩余的锂离子电池使用寿命预测

获取原文
获取原文并翻译 | 示例

摘要

Remaining useful life (RUL) prediction plays a significant role in the health prognostic of lithium-ion batteries (LIBs). The capacity or internal resistance is commonly used to quantify degradation process and predict RUL of LIB, but those two indicators are difficult to be obtained due to complex operational conditions and high costs, respectively. To address this issue, we extract a novel health indicator (HI) from the battery current profiles that can be directly measured online. Furthermore, the indicator is optimized by Box-Cox transformation and evaluated by correlation analysis for degradation modeling accurately. Finally, relevance vector machine (RVM) algorithm is utilized to make a probabilistic prediction for battery RUL based on the extracted HI. The correlation analysis verifies the effectiveness of the novel HI, and comparative experiments demonstrate the proposed method can predict RUL of LIB more accurately.
机译:剩余的使用寿命(RUL)预测在锂离子电池(LIBS)的健康预后起着重要作用。容量或内阻通常用于量化降解过程并预测Lib的rul,但由于复杂的运行条件和高成本,难以获得这两个指标。为解决此问题,我们从电池电流配置文件中提取新的健康指标(HI),可以直接在线测量。此外,该指示剂由Box-Cox转换进行优化,并通过准确地进行劣化建模的相关性分析评估。最后,利用相关矢量机(RVM)算法对基于提取的HI的电池RUL进行概率预测。相关性分析验证了新型HI的有效性,比较实验证明了所提出的方法可以更准确地预测LIB的rul。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号