首页> 外文期刊>Progress in Materials Science >Electro-spinningetting: A strategy for the fabrication of three-dimensional polymer nano-fiberets
【24h】

Electro-spinningetting: A strategy for the fabrication of three-dimensional polymer nano-fiberets

机译:电纺/网织:制造三维聚合物纳米纤维/网的策略

获取原文
           

摘要

Since 2006, a rapid development has been achieved in a subject area, so called electro-spinningetting (ESN), which comprises the conventional electrospinning process and a unique electro-netting process. Electro-netting overcomes the bottleneck problem of electrospinning technique and provides a versatile method for generating spider-web-like nano-nets with ultrafine fiber diameter less than 20 nm. Nano-nets, supported by the conventional electrospun nanofibers in the nano-fiberets (NFN) membranes, exhibit numerious attractive characteristics such as extremely small diameter, high porosity, and Steiner tree network geometry, which make NFN membranes optimal candidates for many significant applications. The progress made during the last few years in the field of ESN is highlighted in this review, with particular emphasis on results obtained in the author's research units. After a brief description of the development of the electrospinning and ESN techniques, several fundamental properties of NFN nanomaterials are addressed. Subsequently, the used polymers and the state-of-the-art strategies for the controllable fabrication of NFN membranes are highlighted in terms of the ESN process. Additionally, we highlight some potential applications associated with the remarkable features of NFN nanostructure. Our discussion is concluded with some personal perspectives on the future development in which this wonderful technique could be pursued.
机译:自2006年以来,在一个主题领域取得了飞速发展,即所谓的电纺/网(ESN),它包括常规的电纺工艺和独特的电铸工艺。静电网克服了静电纺丝技术的瓶颈问题,并提供了一种通用的方法来产生超细纤维直径小于20 nm的蜘蛛网状纳米网。纳米网由纳米纤维/网(NFN)膜中的常规电纺纳米纤维支撑,具有多种吸引人的特性,例如极小直径,高孔隙率和Steiner树状网络几何形状,这使NFN膜成为许多重要材料的最佳候选者应用程序。这篇综述着重介绍了近几年在ESN领域取得的进展,尤其着重于作者研究部门获得的结果。在简要介绍了静电纺丝和ESN技术的发展之后,我们介绍了NFN纳米材料的几个基本特性。随后,就ESN工艺而言,重点介绍了可使用的聚合物和可控制造NFN膜的最新技术。此外,我们重点介绍了与NFN纳米结构非凡特征相关的一些潜在应用。我们的讨论以对未来发展的一些个人见解结束,在这种发展中可以追求这一奇妙的技术。

著录项

  • 来源
    《Progress in Materials Science》 |2013年第8期|1173-1243|共71页
  • 作者单位

    State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China,Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China,College of Textiles, Donghua University, Shanghai 201620, China;

    State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China,Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China;

    Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China;

    Department of Engineering Mechanics and CNMM, School of Aerospace, Tsinghua University, Beijing 100084, China;

    Nanomaterials Research Center, Modern Textile Institute, Donghua University, Shanghai 200051, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号