首页> 外文期刊>Programming and Computer Software >Overcoming Instability in Evaluation of Generalized Hypergeometric Integrals in the Case of Crowding of Singular Points
【24h】

Overcoming Instability in Evaluation of Generalized Hypergeometric Integrals in the Case of Crowding of Singular Points

机译:奇异点拥挤情况下克服广义超几何积分评估中的不稳定性

获取原文
获取原文并翻译 | 示例

摘要

A method for evaluating integral (1.1) with an arbitrarily high accuracy in the case of an arbitrary number of singular points has been developed. The method has linear complexity. It is based on the construction of linear recurrent equations for the coefficients of the solution expansion in different neighborhoods and on the numerical matching of the solutions at the points where the neighborhoods overlap. When the singular points are close to each other, one faces the cancellation phenomenon resulting in great loss of accuracy. The use of symbolic transformations in the computer algebra system Maple 9 makes it possible to overcome numerical instability and ensures effectiveness of the algorithm in the case of high-precision computations. The suggested method can also be used in many other numerically instable problems.
机译:已经开发了一种在任意数量的奇异点的情况下以任意高精度评估积分(1.1)的方法。该方法具有线性复杂度。它基于线性递归方程的构造,用于求解不同邻域中的解扩展系数,并且基于邻域重叠点处解的数值匹配。当奇异点彼此靠近时,一个人将面对消除现象,从而导致精度的极大损失。在计算机代数系统Maple 9中使用符号变换可以克服数值不稳定性,并在高精度计算的情况下确保算法的有效性。建议的方法也可以用于许多其他数值不稳定的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号