首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition.
【24h】

Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition.

机译:通过淀粉样蛋白纤维的受控自组装和选择性金属沉积构建的导电纳米线。

获取原文
获取原文并翻译 | 示例
       

摘要

Recent research in the field of nanometer-scale electronics has focused on the operating principles of small-scale devices and schemes to realize useful circuits. In contrast to established "top-down" fabrication techniques, molecular self-assembly is emerging as a "bottom-up" approach for fabricating nanostructured materials. Biological macromolecules, especially proteins, provide many valuable properties, but poor physical stability and poor electrical characteristics have prevented their direct use in electrical circuits. Here we describe the use of self-assembling amyloid protein fibers to construct nanowire elements. Self-assembly of a prion determinant from Saccharomyces cerevisiae, the N-terminal and middle region (NM) of Sup35p, produced 10-nm-wide protein fibers that were stable under a wide variety of harsh physical conditions. Their lengths could be roughly controlled by assembly conditions in the range of 60 nm to several hundred micrometers. A genetically modified NM variant that presents reactive, surface-accessible cysteine residues was used to covalently link NM fibers to colloidal gold particles. These fibers were placed across gold electrodes, and additional metal was deposited by highly specific chemical enhancement of the colloidal gold by reductive deposition of metallic silver and gold from salts. The resulting silver and gold wires were approximately 100 nm wide. These biotemplated metal wires demonstrated the conductive properties of a solid metal wire, such as low resistance and ohmic behavior. With such materials it should be possible to harness the extraordinary diversity and specificity of protein functions to nanoscale electrical circuitry.
机译:纳米级电子领域的最新研究集中在小型器件的工作原理和实现有用电路的方案上。与已建立的“自上而下”的制造技术相反,分子自组装作为制造纳米结构材料的“自下而上”的方法正在出现。生物大分子,尤其是蛋白质,提供了许多有价值的特性,但较差的物理稳定性和较差的电特性已使其无法直接用于电路中。在这里,我们描述了使用自组装淀粉样蛋白纤维来构建纳米线元素。来自酿酒酵母,Sup35p的N末端和中间区域(NM)的病毒决定簇的自组装产生了10纳米宽的蛋白纤维,该蛋白纤维在各种恶劣的物理条件下都稳定。它们的长度可以通过组装条件在60 nm至几百微米的范围内大致控制。具有反应性,表面可及的半胱氨酸残基的基因修饰的NM变体用于将NM纤维与胶体金颗粒共价连接。将这些纤维放置在金电极上,并通过从盐中还原性沉积金属银和金,通过胶体金的高度特异性化学增强来沉积其他金属。所得的银和金线约为100 nm宽。这些生物模板化金属线证明了固体金属线的导电特性,例如低电阻和欧姆行为。使用这种材料,应该有可能将蛋白质功能的非凡多样性和特异性利用到纳米级电路中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号