首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation.
【24h】

Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation.

机译:脑乳酸动力学:激活后摄取神经元乳酸的建模证据。

获取原文
获取原文并翻译 | 示例
       

摘要

A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans.
机译:脑能量代谢中的一个关键问题是星形胶质细胞在大脑内产生的乳酸是否在激活时被神经元吸收并代谢。尽管有足够的证据表明神经元可以有效地利用乳酸作为能量底物,但至少在体外,几乎没有实验数据表明体内确实如此。为了解决这个问题,我们使用一种建模方法来确定解释激活后观察到的典型脑乳酸动力学所必需的机制。在考虑到能量代谢间隔的先前验证的模型的基础上,我们开发了脑乳酸动力学的数学模型,该模型应用于描述激活后细胞外乳酸水平变化的公开数据。结果表明,刺激开始时观察到的细胞外乳酸浓度的初始下降只能通过实质内细胞区室的快速摄取来令人满意地解释。相反,血流量增加或细胞外pH值变化都不是乳酸初始下降的主要原因,而组织乳酸的扩散仅倾向于降低其幅度。单羧酸盐转运蛋白同工型的动力学性质强烈表明,神经元代表激活诱导的乳酸摄取的最可能区室,并且在激活开始后早期发生的神经元乳酸利用是动物和人类观察到的脑乳酸水平最初下降的原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号