首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Three-pronged genomic analysis reveals yeast cell-type regulation circuitry
【24h】

Three-pronged genomic analysis reveals yeast cell-type regulation circuitry

机译:三管齐下的基因组分析揭示了酵母细胞类型的调控电路

获取原文
获取原文并翻译 | 示例
           

摘要

Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229 The phenotypic and physiological potential of a cell is determined by its transcription program, which, in turn, is determined by the array of transcription factors present in the cell. A sophisticated and detailed understanding of the role of a particular transcription factor requires that all of its target genes be identified. This task is a daunting one, but it has become feasible with the availability of complete genome sequences, coupled with genome-wide analytical methods such as transcription profiling and chromatin immunoprecipitation (ChIP) assays. In a recent study, Harbison et al. (1) used ChIP analysis, together with predicted sequence-recognition motifs, to determine the genomic occupancy of 203 DNA-binding transcription regulators in yeast. Because of the scope of that study, the question of whether all of the targets of a particular transcription regulator function in a particular physiological setting were identified was left unanswered. In a recent issue of PNAS, Galgoczy et al. (2) focus on a specific biological question with the goal of identifying the complete set of target genes for the transcription regulators that determine cell type in the budding yeast Saccharomyces cerevisiae. Cell-type specification in yeast has been studied intensely in a number of laboratories over the last 20 years, and the information gained from those studies served as a touchstone for the current work; that is, certain targets could be anticipated. However, there is ample room for surprise. Some target genes may have eluded discovery, and it is conceivable that the cell-type regulators also make connections to other physiological processes. Indeed, both possibilities are re- alized in the current study. In their work, Galgoczy et al. (2) used ChIP analysis, as had Harbison et al. (1), but, in addition, they used transcription profiling and phylogenetic comparisons. The application of all three approaches resulted in "overdetermination" of the target gene sets for the yeast cell-type regulators, giving one confidence that the complete sets have been identified.
机译:俄勒冈大学,尤金,分子生物学研究所,俄勒冈州97403-1229细胞的表型和生理潜能由其转录程序决定,而转录程序又由细胞中存在的转录因子阵列决定。对特定转录因子的作用的复杂而详细的了解要求鉴定其所有靶基因。这项任务艰巨,但随着完整基因组序列的可用性以及全基因组范围的分析方法(如转录谱和染色质免疫沉淀(ChIP)分析)的结合,这一任务已变得可行。在最近的一项研究中,Harbison等人。 (1)使用ChIP分析以及预测的序列识别基序,来确定酵母中203个与DNA结合的转录调节因子的基因组占有率。由于这项研究的范围,是否在特定的生理环境中确定特定转录调节子功能的所有靶标的问题仍未得到解答。在最近发布的PNAS中,Galgoczy等人。 (2)着眼于一个特定的生物学问题,目的是为转录调节子确定完整的靶基因,这些转录调节子决定了发芽酵母酿酒酵母中的细胞类型。在过去的20年中,许多实验室已经对酵母中的细胞类型规格进行了深入研究,从这些研究中获得的信息成为当前工作的试金石。也就是说,可以预期某些目标。但是,仍有足够的惊喜空间。一些靶基因可能尚未发现,可以想象细胞类型的调节剂也与其他生理过程有关。的确,在当前研究中,这两种可能性都得到了证实。在他们的工作中,Galgoczy等。 (2)使用了Harbison等人的ChIP分析。 (1),但除此之外,他们还使用了转录分析和系统发育比较。所有这三种方法的应用导致酵母细胞类型调节剂的目标基因组“过度确定”,使人确信已鉴定出完整的基因组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号