首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources
【24h】

Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources

机译:矿物质铜源存在下甲烷菌介导的甲烷单加氧酶基因表达

获取原文
获取原文并翻译 | 示例
           

摘要

Methane is a major greenhouse gas linked to global warming; however, patterns of in situ methane oxidation by methane-oxidizing bacteria (methanotrophs), nature's main biological mechanism for methane suppression, are often inconsistent with laboratory predictions. For example, one would expect a strong relationship between methanotroph ecology and Cu level because methanotrophs require Cu to sustain particulate methane monooxygenase (pMMO), the most efficient enzyme for methane oxidation. However, no correlation has been observed in nature, which is surprising because methane monooxygenase (MMO) gene expression has been unequivocally linked to Cu availability. Here we provide a fundamental explanation for this lack of correlation. We propose that MMO expression in nature is largely controlled by solid-phase Cu geochemistry and the relative ability of Cu acquisition systems in methanotrophs, such as methanobactins (mb), to obtain Cu from mineral sources. To test this hypothesis, RT-PCR expression assays were developed for Methylosinus trichosporium OB3b (which produces mb) to quantify pMMO, soluble MMO (the alternate MMO expressed when Cu is "unavailable"), and 16S-rRNA gene expression under progressively more stringent Cu supply conditions. When Cu was provided as CuCl_2, pMMO transcript levels increased significantly consistent with laboratory work. However, when Cu was provided as Cu-doped iron oxide, pMMO transcript levels increased only when mb was also present. Finally, when Cu was provided as Cu-doped borosilicate glass, pMMO transcription patterns varied depending on the ambient mb:Cu supply ratio. Cu geochemistry clearly influences MMO expression in terrestrial systems, and, as such, local Cu mineralogy might provide an explanation for methane oxidation patterns in the natural environment.
机译:甲烷是与全球变暖有关的主要温室气体。然而,自然界抑制甲烷的主要生物学机制是甲烷氧化细菌(甲烷营养菌)原位甲烷氧化的模式通常与实验室预测不一致。例如,人们会期望甲烷营养生物与铜含量之间存在很强的关系,因为甲烷营养生物需要铜来维持颗粒甲烷单加氧酶(pMMO),这是甲烷氧化最有效的酶。然而,在自然界中没有观察到相关性,这是令人惊讶的,因为甲烷单加氧酶(MMO)基因表达已明确地与铜的利用率相关联。在这里,我们为这种缺乏相关性提供了基本解释。我们提出,自然界中MMO的表达很大程度上受固相Cu地球化学和甲烷营养生物中的甲烷获取系统(例如甲烷菌素(mb))从矿产资源获得Cu的相对能力的控制。为了检验该假设,开发了针对毛果孢霉OB3b(产生mb)的RT-PCR表达测定法,以定量pMMO,可溶性MMO(当Cu“不可用”时表达的备用MMO)和在更严格的条件下的16S-rRNA基因表达铜的供应条件。当提供Cu作为CuCl_2时,pMMO转录水平显着增加,与实验室工作一致。但是,当提供Cu作为掺杂Cu的氧化铁时,仅当也存在mb时,pMMO转录水平才增加。最后,当提供铜作为掺杂铜的硼硅酸盐玻璃时,pMMO转录模式会根据周围的mb:Cu供给比而变化。铜的地球化学作用显然会影响陆地系统中MMO的表达,因此,当地的铜矿物学可能为自然环境中甲烷氧化模式提供了解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号