首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers >Modelling and analysis of delta ferrite content in claddings deposited by flux cored arc welding using a neural network
【24h】

Modelling and analysis of delta ferrite content in claddings deposited by flux cored arc welding using a neural network

机译:基于神经网络的药芯焊丝熔覆熔覆层中δ铁素体含量的建模与分析

获取原文
获取原文并翻译 | 示例

摘要

Measurement of delta ferrite in cladding gives important insight into the future mechanical and corrosion resistant behaviour of the cladded structures. The amount of delta ferrite formed during cladding is influenced by process parameters such as welding speed, welding current, and nozzle-to-plate distance. Therefore, it is essential to predict the effect of these parameters on the formation of delta ferrite. This article discusses the development of an artificial neural network model to predict the delta ferrite content in austenitic stainless-steel claddings deposited by the flux cored arc welding process. A novel approach of using the design of experiments to collect data to train the network has been adopted in this investigation. The study revealed that the delta ferrite content can be predicted more accurately using the neural networks with a minimum number of experiments. The results also indicated that welding current and speed have a significant influence on the amount of ferrite and the interaction effects of these parameters play a major role in determining ferrite in the claddings. [PUBLICATION ABSTRACT]
机译:熔覆中δ铁素体的测量为熔覆结构的未来机械和耐腐蚀性能提供了重要的见识。熔覆过程中形成的δ铁素体数量受工艺参数(例如焊接速度,焊接电流和喷嘴到板的距离)的影响。因此,必须预测这些参数对δ铁素体形成的影响。本文讨论了一种人工神经网络模型的开发,该模型可以预测药芯焊丝堆焊过程中沉积的奥氏体不锈钢熔覆层中的δ铁素体含量。在这项研究中采用了一种新颖的方法,即使用实验设计来收集数据来训练网络。研究表明,使用最少次数的实验,可以使用神经网络更准确地预测δ铁素体含量。结果还表明,焊接电流和速度对铁素体的数量有显着影响,这些参数的相互作用对决定包层中的铁素体起主要作用。 [出版物摘要]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号