首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of Materials: Design and Application >Continuum damage mechanics-based ductile behavior and fatigue life estimation of low carbon steels: AISI 1020 and AISI 1030
【24h】

Continuum damage mechanics-based ductile behavior and fatigue life estimation of low carbon steels: AISI 1020 and AISI 1030

机译:基于连续损伤力学的低碳钢延性和疲劳寿命估算:AISI 1020和AISI 1030

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents an experimental estimation of the ductile behavior and low-cycle fatigue life for widely used structural steels AISI 1020 and AISI 1030 based on continuum damage mechanics approach. This method identifies the deterioration in stiffness of a material arising from micromechanisms of formation, growth, and coalescence of microvoids. This helps the characterization of the ductile flow behavior of metals through a damage variable D, evaluated via load-unload cyclic tensile test. The influence of strain hardening exponent, commonly treated as a constant in ductile flow characterization, is also explored in the current investigation. Its determination uses the Hollomon constitutive relation. Estimated D at different strain levels defines the corresponding effective stress. Application of this stress to the strain equivalence theory then enables the prediction of the stress-strain curve. The model-based results closely approximate the experimental stress-strain curve up to the onset of necking. The agreement of experimental results for fatigue life of the materials from low-cycle fatigue tests with damage-based low-cycle fatigue model demonstrates the correctness of the experimental findings. The damage-based model additionally helps in the prediction of microcrack nucleation and crack propagation life separately. Fractographic examinations of test specimen exhibit usually observed morphology of involved failure mechanisms. The present study emphasizes the experimental means of damage-based ductile flow assessment involving strain hardening exponent term and also the low-cycle fatigue life estimation. The significance of varying strain hardening exponent is further expressed in terms of the corresponding damage magnitude. The material data obtained from this study depicts the damage state at different levels of plastic strain that may serve as a useful information for metal-forming process design.
机译:本文基于连续损伤力学方法,对广泛使用的结构钢AISI 1020和AISI 1030的塑性行为和低周疲劳寿命进行了实验评估。该方法确定了由于微孔的形成,生长和聚结的微观机制引起的材料刚度的降低。这有助于通过损伤变量D表征金属的延性流动行为,该损伤变量是通过加载/卸载循环拉伸试验评估的。在目前的研究中,还探讨了应变硬化指数的影响,该指数通常在塑性流表征中被视为常数。它的确定使用Hollomon本构关系。在不同应变水平下的估计D定义了相应的有效应力。然后,将该应力应用于应变等效理论即可预测应力-应变曲线。基于模型的结果非常接近实验应力-应变曲线,直至出现颈缩。低循环疲劳试验的材料疲劳寿命的实验结果与基于损伤的低循环疲劳模型的一致性证明了实验结果的正确性。基于损伤的模型还有助于分别预测微裂纹成核和裂纹扩展寿命。试样的分形检查​​通常表现出所涉及的破坏机理的形态。本研究强调了基于应变的韧性流评估的实验手段,包括应变硬化指数项以及低周疲劳寿命估计。应变硬化指数变化的意义进一步以相应的破坏幅度表示。从这项研究中获得的材料数据描绘了在不同水平的塑性应变下的损伤状态,这可能对金属成形工艺设计有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号