首页> 外文期刊>Proceedings of the institution of mechanical engineers >Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil-bucket interaction
【24h】

Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil-bucket interaction

机译:结合土-桶相互作用的液压挖掘机挖掘过程基于任务空间的动态轨迹规划

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a task space-based methodology for dynamic trajectory planning for digging process of a hydraulic excavator is presented, with the integration of soil-bucket interaction. An extended soil-bucket interaction model, which adds the resistive moment compared to the previous models, is provided in this research. This improved model is validated by comparing with the measurement data taken from field experiments before integrating it into a dynamic model of an excavator. Further, Newton-Euler method is used for the derivation of the dynamics of each link of the excavator to determine the joint forces, which can cause the machine damage. The position and orientation trajectories of the bucket in the task space are parameterized by using the B-splines, so as to achieve the task-oriented operations and ensure the operation flexibility. The joint space motion characteristics are obtained by solving the inverse kinematics of the working mechanism of an excavator. Moreover, to avoid the operation uncertainty for a given bucket tip position trajectory and reduce the computational effort, the self-motion parameters are introduced when solving the inverse kinematics of the redundant working mechanism. All these self-motion parameters are taken as a set of design variables in the trajectory optimization problem. Also, the limits on the hydraulic driving forces, joint angles, angular velocities and accelerations, as well as bucket capacity are considered as the optimization constraints for the digging process. Finally, optimization examples of two typical digging categories (i.e. level digging work and slope digging work) are given to demonstrate and verify the capabilities of the new methodology proposed in this research. The results show that the proposed method can effectively generate the optimal trajectories satisfying the following criteria: time efficiency, energy efficiency, and least machine damage. This work lays a solid foundation for motion planning and autonomous control of an excavator.
机译:本文提出了一种基于任务空间的液压挖掘机挖掘过程动态轨迹规划方法,并结合了土斗相互作用。本研究提供了扩展的土-桶相互作用模型,该模型与以前的模型相比增加了阻力。在将其集成到挖掘机的动态模型之前,通过与从现场实验中获得的测量数据进行比较,可以验证这种改进的模型。此外,牛顿-欧拉方法用于推导挖掘机各连杆的动力学特性,以确定可能导致机器损坏的关节力。利用B样条对铲斗在任务空间中的位置轨迹进行参数化,以实现任务导向的作业,保证作业的灵活性。通过解决挖掘机工作机构的逆运动学来获得关节空间运动特性。此外,为了避免给定铲斗尖端位置轨迹的操作不确定性并减少计算量,在解决冗余工作机构的逆运动学时引入了自运动参数。所有这些自运动参数都被视为轨迹优化问题中的一组设计变量。同样,液压驱动力,关节角度,角速度和加速度以及铲斗容量的限制被认为是挖掘过程的优化约束。最后,给出了两个典型挖掘类别(即水平挖掘作业和边坡挖掘作业)的优化示例,以演示和验证本研究中提出的新方法的功能。结果表明,所提出的方法可以有效地产生满足以下标准的最优轨迹:时间效率,能量效率和最小的机械损伤。这项工作为挖掘机的运动计划和自主控制打下了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号