首页> 外文期刊>Probabilistic engineering mechanics >Decentralized random decrement technique for efficient data aggregation and system identification in wireless smart sensor networks
【24h】

Decentralized random decrement technique for efficient data aggregation and system identification in wireless smart sensor networks

机译:分散随机递减技术,用于无线智能传感器网络中的有效数据聚合和系统识别

获取原文
获取原文并翻译 | 示例

摘要

Smart sensors have been recognized as a promising technology with the potential to overcome many of the inherent difficulties and limitations associated with traditional wired structural health monitoring (SHM) systems. The unique features offered by smart sensors, including wireless communication, onboard computation, and cost effectiveness, enable deployment of the dense array of sensors that are needed for monitoring of large-scale civil infrastructure. Despite the many advances in smart sensor technologies, power consumption is still considered as one of the most important challenges that should be addressed for the smart sensors to be more widely adopted in SHM applications. Data communication, the most significant source of the power consumption, can be reduced by appropriately selecting data processing schemes and the related network topology. This paper presents a new decentralized data aggregation approach for system identification based on the Random Decrement Technique (RDT). Following a brief overview of the RDT, which is an output-only system identification approach, a decentralized hierarchical approach is described and shown to be suitable for implementation in the intrinsically distributed computing environment found in wireless smart sensor networks (WSSNs). RDT-based decentralized data aggregation is then implemented on the Imote2 smart sensor platform based on the Illinois Structural Health Monitoring Project (ISHMP) Services Toolsuite. Finally, the efficacy of the RDT method is demonstrated experimentally in terms of the required data communication and the accuracy of identified dynamic properties.
机译:智能传感器已被公认为是一种有前途的技术,具有克服与传统有线结构健康监测(SHM)系统相关的许多固有困难和局限的潜力。智能传感器提供的独特功能(包括无线通信,机载计算和成本效益)使得能够部署监视大型民用基础设施所需的密集传感器阵列。尽管智能传感器技术取得了许多进步,但是功耗仍然被认为是要在SHM应用中更广泛地采用智能传感器的最重要的挑战之一。可以通过适当选择数据处理方案和相关的网络拓扑来减少数据通信(功耗的最重要来源)。本文提出了一种基于随机减量技术(RDT)的新的分散式数据聚合方法,用于系统识别。在对RDT的简要概述之后,RDT是一种仅用于输出的系统识别方法,下面描述了一种分散的分层方法,该方法被证明适用于在无线智能传感器网络(WSSN)中的固有分布计算环境中实施。然后,基于伊利诺伊州结构健康监测项目(ISHMP)服务工具套件,在Imote2智能传感器平台上实施基于RDT的分散数据聚合。最后,RDT方法的有效性通过所需的数据通信和已识别动态特性的准确性进行了实验证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号