首页> 外文期刊>Probabilistic engineering mechanics >Iterated stochastic filters with additive updates for dynamic system identification: Annealing-type iterations and the filter bank
【24h】

Iterated stochastic filters with additive updates for dynamic system identification: Annealing-type iterations and the filter bank

机译:具有附加更新的迭代随机滤波器,用于动态系统识别:退火型迭代和滤波器组

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.
机译:提出了一种基于滤波密度的高斯和表示和退火式迭代更新的非线性随机滤波方案,该算法是累加的,并使用人工扩散参数。更新的可加性缓解了使用基于加权粒子的经验密度逼近过滤器的过滤器经常遇到的重量崩溃问题。提出的蒙特卡洛滤波器组在结构上符合母体非线性滤波(Kushner-Stratonovich)方程,并具有出色的混合特性,可以充分探索状态向量的相空间。目前针对几个精心选择的数值示例对滤波器组的性能进行了评估,相对于大多数其他竞争滤波器,尤其是在高维动态系统识别问题中,滤波器组在滤波器收敛和估计精度方面的出色表现提供了充分的证据。可能需要根据其参考状态估算参数值的相对较小变化的情况。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号