首页> 外文期刊>Probabilistic engineering mechanics >Efficient Monte Carlo resampling for probability measure changes from Bayesian updating
【24h】

Efficient Monte Carlo resampling for probability measure changes from Bayesian updating

机译:针对贝叶斯更新的概率测度变化进行有效的蒙特卡洛重采样

获取原文
获取原文并翻译 | 示例

摘要

The objective of Bayesian inference is often to infer, from data, a probability measure for a random variable that can be used as input for Monte Carlo simulation. When datasets for Bayesian inference are small, a principle challenge is that, as additional data are collected, the probability measure inferred from Bayesian inference may change significantly. In such cases, expensive Monte Carlo simulations may have already been performed using the original distribution and it is infeasible to start again and perform a new Monte Carlo analysis using the updated density due to the large added computational cost. This work explores four strategies for updating Monte Carlo simulations for such a change in probability measure. The efficiency of each strategy is compared and the ultimate aim is to achieve the change in distribution with a minimal number of added computational simulations. The results show that, when the change in measure is small, importance sampling reweighting can be very effective. Otherwise, a proposed mixed augmenting-filtering algorithm can robustly and efficiently accommodate a measure change in Monte Carlo simulation. The strategy is then applied for uncertainty quantification in the buckling strength of a simple plate given ongoing data collection to estimate uncertainty in the yield stress.
机译:贝叶斯推断的目的通常是从数据中推断出一个随机变量的概率度量,该变量可以用作蒙特卡洛模拟的输入。当贝叶斯推断的数据集较小时,一个主要的挑战是,随着收集其他数据,从贝叶斯推断中推断出的概率测度可能会发生显着变化。在这种情况下,可能已经使用原始分布执行了昂贵的蒙特卡洛模拟,并且由于增加了较大的计算成本,因此无法重新开始并使用更新后的密度执行新的蒙特卡洛分析是不可行的。这项工作探索了四种更新概率测量方法变化的蒙特卡洛模拟的策略。比较每种策略的效率,最终目的是通过最少数量的计算模拟来实现分布的变化。结果表明,当度量值的变化较小时,重要性抽样重新加权会非常有效。否则,提出的混合增强滤波算法可以鲁棒而有效地适应蒙特卡洛模拟中的度量变化。然后,在不断收集数据的情况下,将该策略应用于简单板屈曲强度的不确定性量化,以估计屈服应力的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号