首页> 外文期刊>Probabilistic engineering mechanics >Faster simulation methods for the nonstationary random vibrations of nonlinear MDOF systems
【24h】

Faster simulation methods for the nonstationary random vibrations of nonlinear MDOF systems

机译:非线性MDOF系统非平稳随机振动的更快仿真方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper semi-analytical forward-difference Monte Carlo simulation procedures are proposed for the determination of the lower order statistics and the Joint Probability Density Function (JPDF) of the stochastic response of geometrically nonlinear multi-degree-of-freedom structural systems subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations of motion. All of the proposed procedures yield the exact results as the time step goes to zero. The proposed procedures are based on analytical convolutions of the excitation process, hereby, reducing the generation of stochastic processes and numerical integration to the generation of random vectors only. Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process. The comparisons show that the so-called Ermark-Allen algorithm developed for simulation applications in molecular dynamics is the most favourable procedure for MDOF structural systems.
机译:本文提出了半解析前向差分蒙特卡罗模拟程序,用于确定受制于几何非线性多自由度结构系统的随机响应的低阶统计量和联合概率密度函数(JPDF)。非平稳高斯白噪声激发,作为常规直接模拟方法的替代方法。这些替代的仿真过程依赖于每个时间步长的局部高斯假设。该假设等于运动方程的各种线性化。当时间步长为零时,所有建议的过程都会产生准确的结果。所提出的过程基于激励过程的解析卷积,从而将随机过程的生成和数值积分减少到仅随机矢量的生成。这样的处理提供了更高的收敛速度,更快的速度和更高的准确性。将这些过程与直接蒙特卡罗模拟过程进行比较,后者使用四阶Runge-Kutta方案,白噪声过程由宽带Ruiz-Penzien虚线过程近似。比较表明,为分子动力学模拟应用开发的所谓的Ermark-Allen算法是MDOF结构系统最有利的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号