首页> 外文期刊>IEEE Transactions on Power Systems >Electric Distribution Network Expansion Under Load-Evolution Uncertainty Using an Immune System Inspired Algorithm
【24h】

Electric Distribution Network Expansion Under Load-Evolution Uncertainty Using an Immune System Inspired Algorithm

机译:基于免疫系统启发式算法的负荷演化不确定性下的配电网扩展

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of electric distribution network expansion under condition of uncertainty in the evolution of node loads in a time horizon. An immune-based evolutionary optimization algorithm is developed here, in order to find not only the optimal network, but also a set of suboptimal ones, for a given most probable scenario. A Monte-Carlo simulation of the future load conditions is performed, evaluating each such solution within a set of other possible scenarios. A dominance analysis is then performed in order to compare the candidate solutions, considering the objectives of: smaller infeasibility rate, smaller nominal cost, smaller mean cost and smaller fault cost. The design outcome is a network that has a satisfactory behavior under the considered scenarios. Simulation results show that the proposed approach leads to resulting networks that can be rather different from the networks that would be found via a conventional design procedure: reaching more robust performances under load evolution uncertainties
机译:本文讨论了在时间范围内节点负载的变化不确定的情况下配电网络的扩展问题。在这里开发了一种基于免疫的进化优化算法,以便不仅针对给定的最可能场景找到最佳网络,而且找到一组次优网络。对未来的负载情况进行了蒙特卡洛模拟,在一组其他可能的情况下评估了每个这样的解决方案。然后进行优势分析,以比较候选解决方案,并考虑以下目标:不可行率较小,名义成本较小,平均成本较小和故障成本较小。设计结果是一个在所考虑的方案下具有令人满意的行为的网络。仿真结果表明,所提出的方法所产生的网络可能与通过常规设计程序发现的网络大不相同:在负载演化不确定性下达到更强大的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号