首页> 外文期刊>IEEE Transactions on Power Systems >Short-Term Bus Load Forecasting of Power Systems by a New Hybrid Method
【24h】

Short-Term Bus Load Forecasting of Power Systems by a New Hybrid Method

机译:一种新的混合方法预测电力系统的短期母线负荷

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new hybrid method is proposed for short-term bus load forecasting of power systems. The method is composed of the forecast-aided state estimator (FASE) and the multilayer perceptron (MLP) neural network. The FASE forecasts hourly loads of each bus by means of its previous data. Then the inputs and outputs of the FASE are fed to the MLP neural network. In other words, the MLP is trained to extract the mapping function between the inputs and outputs of the FASE (as input features) and real loads as output features. The proposed hybrid method has been examined on a real power system, a part of Iran's power network. The obtained results, discussed comprehensively, show that the hybrid method has better prediction accuracy than the other methods, such as MLP, FASE, and the periodic auto-regression (PAR) model
机译:本文提出了一种新的混合方法用于电力系统的短期母线负荷预测。该方法由预测状态估计器(FASE)和多层感知器(MLP)神经网络组成。 FASE通过其先前的数据预测每个总线的每小时负载。然后,FASE的输入和输出被馈送到MLP神经网络。换句话说,对MLP进行了训练,以提取FASE的输入和输出(作为输入特征)和实际负载之间作为输出特征的映射函数。提议的混合方法已经在伊朗电网的一部分的真实电力系统中进行了研究。全面讨论的结果表明,混合方法比MLP,FASE和周期自回归(PAR)模型等其他方法具有更好的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号