首页> 外文期刊>Power Systems, IEEE Transactions on >Optimal Wind Clustering Methodology for Adequacy Evaluation in System Generation Studies Using Nonsequential Monte Carlo Simulation
【24h】

Optimal Wind Clustering Methodology for Adequacy Evaluation in System Generation Studies Using Nonsequential Monte Carlo Simulation

机译:使用非序列蒙特卡洛模拟的系统生成研究中充分性评估的最优风聚类方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, several clustering algorithms are investigated in order to group together wind parks with close statistical behavior. Here, the proposed approach is practically founded on a fast incremental algorithm validated by a normalized principal component analysis combined with a k-means process. Both methods are practically based on the definition of a Pearson correlation coefficient. The advantage of such a clustering methodology is mainly perceptible in large-scale electrical systems with increased wind penetration. Indeed, it allows to group together highly correlated wind parks into the same cluster and to integrate them in a realistic way into a nonsequential Monte Carlo adequacy evaluation process. Here, the implemented clustering methodology is applied to 94 wind sites located in Occidental Europe. Then, in order to point out the efficiency of this clustering methodology that is afterwards combined with an original wind speed sampling process, an adequacy study is applied to the Roy Billinton Test System in the particular case of two wind clusters.
机译:本文研究了几种聚类算法,以将具有紧密统计行为的风场分组在一起。在这里,所提出的方法实际上是建立在快速增量算法的基础上,该算法通过归一化主成分分析结合k-means过程进行了验证。两种方法实际上都是基于Pearson相关系数的定义。这种聚类方法的优势主要在具有更大风速的大型电气系统中显而易见。的确,它可以将高度相关的风电场组合在一起,形成一个集群,并以一种现实的方式将其整合到无序的蒙特卡洛充足性评估过程中。在这里,已实施的聚类方法论应用于位于欧洲西部的94个风场。然后,为了指出此聚类方法的效率,然后将其与原始风速采样过程相结合,针对两个风簇的特殊情况,对Roy Billinton测试系统进行了充分的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号