首页> 外文期刊>Power Systems, IEEE Transactions on >Bayesian Network Model With Monte Carlo Simulations for Analysis of Animal-Related Outages in Overhead Distribution Systems
【24h】

Bayesian Network Model With Monte Carlo Simulations for Analysis of Animal-Related Outages in Overhead Distribution Systems

机译:蒙特卡罗模拟的贝叶斯网络模型用于分析架空配电系统中与动物有关的停机

获取原文
获取原文并翻译 | 示例

摘要

This paper extends previous research on using a Bayesian network model to investigate impacts of time (month) and weather (number of fair weather days in a week) on animal-related outages in distribution systems. Outage history (outages in the previous week) is included as an additional input to the model, and inputs and outputs are classified systematically to reduce errors in estimates of outputs. Conditional probability table obtained from the historical data are used to estimate weekly animal-related outages which is followed by a Monte Carlo simulation to find estimates of mean and confidence limits for monthly animal-related outages. Comparison of results obtained for four cities of different sizes in Kansas with those obtained using a hybrid waveleteural network model shows consistency between the two models. The methodology presented in this paper is simple to implement and useful for the utilities for year-end analysis of the outage data to identify specific reliability-related concerns.
机译:本文扩展了以前使用贝叶斯网络模型来研究时间(月)和天气(一周中的晴天天数)对配电系统中与动物相关的故障的影响的研究。中断历史记录(前一周的中断)作为模型的附加输入包括在内,并且系统对输入和输出进行了分类,以减少输出估计中的误差。从历史数据中获得的条件概率表用于估计每周与动物有关的中断的数量,然后进行蒙特卡罗模拟,以找到与每月与动物有关的中断的平均值和置信度限制的估计值。堪萨斯州四个不同规模城市的结果与使用混合小波/神经网络模型获得的结果的比较表明,这两个模型之间具有一致性。本文中介绍的方法易于实施,并且对于公用事业部门在年末对中断数据进行分析以识别特定的可靠性相关问题时很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号