首页> 外文期刊>Power Systems, IEEE Transactions on >Dynamic Reconfiguration of Shipboard Power Systems Using Reinforcement Learning
【24h】

Dynamic Reconfiguration of Shipboard Power Systems Using Reinforcement Learning

机译:基于强化学习的舰船动力系统动态重构

获取原文
获取原文并翻译 | 示例

摘要

A novel approach for the automatic reconfiguration of shipboard power systems (SPS) based on Q-learning has been investigated. Using this approach it is possible to obtain an optimal set of switches to open/close, in order to restore power to the loads, such that the weighted sum of the power delivered to the loads is maximized. This approach differs significantly from other methods previously studied for reconfiguration as it is a dynamic technique that produces not only the final reconfiguration, but also the correct order in which the switches are to be changed. Simulation results clearly demonstrate the effectiveness of this method.
机译:研究了一种基于Q学习的舰船动力系统(SPS)自动重新配置的新颖方法。使用这种方法,可以获得用于打开/关闭的最佳开关组,以便恢复负载的功率,从而使传递给负载的功率的加权总和最大化。这种方法与先前研究的其他用于重新配置的方法有很大的不同,因为它是一种动态技术,不仅会产生最终的重新配置,而且还会产生更改开关的正确顺序。仿真结果清楚地证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号