首页> 外文期刊>Power Systems, IEEE Transactions on >Probabilistic Load Flow Modeling Comparing Maximum Entropy and Gram-Charlier Probability Density Function Reconstructions
【24h】

Probabilistic Load Flow Modeling Comparing Maximum Entropy and Gram-Charlier Probability Density Function Reconstructions

机译:比较最大熵和克-夏利概率密度函数重构的概率潮流模型

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic load flow (PLF) modeling is gaining renewed popularity as power grid complexity increases due to growth in intermittent renewable energy generation and unpredictable probabilistic loads such as plug-in hybrid electric vehicles (PEVs). In PLF analysis of grid design, operation and optimization, mathematically correct and accurate predictions of probability tail regions are required.
机译:由于间歇性可再生能源发电的增长和不可预测的概率负载(例如插电式混合动力汽车)的出现,电网复杂性不断提高,概率潮流(PLF)建模正越来越受到人们的欢迎。在网格设计,操作和优化的PLF分析中,需要数学上正确和准确地预测概率尾部区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号