首页> 外文期刊>Power Systems, IEEE Transactions on >Dynamic Event Detection Using a Distributed Feature Selection Based Machine Learning Approach in a Self-Healing Microgrid
【24h】

Dynamic Event Detection Using a Distributed Feature Selection Based Machine Learning Approach in a Self-Healing Microgrid

机译:自恢复微电网中基于分布式特征选择的机器学习方法的动态事件检测

获取原文
获取原文并翻译 | 示例

摘要

A self-healing function is an attractive feature in any modern microgrid. Once a fault occurs, it is imperative for a grid to monitor its status, take action based on the level of severity, and after the contingency has been cleared, restore the system. With an increasing number of microgrids and distributed generation stations, deploying a centralized control is no longer a cost-effective option, and therefore distributed control is a likely solution. In an interconnected network, it is important to detect the underlying events taking place in each of the distributed stations, otherwise operational decisions become noncoherent. This paper proposes a novel, feature selection-based distributed machine learning approach to detect the dynamic signatures of different power system events. The purpose is to facilitate a postfault decision-making process in order to restore a stand-alone microgrid without the intervention of a central station. The proposed method detects meaningful features from the generator data and then applies a multiclass classification algorithm to the feature data. Each class represents one dynamic event taking place. The methodology is demonstrated in an interconnected two-area-based microgrid with multiple types of energy generation schemes.
机译:在任何现代微电网中,自愈功能都是很有吸引力的功能。一旦发生故障,就必须对网格进行监视,并根据严重性级别采取措施,并在清除突发情况后恢复系统。随着微电网和分布式发电站数量的增加,部署集中控制不再是一种具有成本效益的选择,因此分布式控制是一种可能的解决方案。在互连的网络中,重要的是检测在每个分布式站中发生的基础事件,否则操作决策将变得不一致。本文提出了一种新颖的,基于特征选择的分布式机器学习方法,用于检测不同电力系统事件的动态特征。目的是促进故障后的决策过程,以便在没有中央站干预的情况下恢复独立的微电网。所提出的方法从生成器数据中检测出有意义的特征,然后将多类分类算法应用于特征数据。每个类代表一个动态事件的发生。该方法论在具有多种类型的能量产生方案的基于互连的基于两个区域的微电网中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号