首页> 外文期刊>IEEE Transactions on Power Systems >Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems
【24h】

Use of ARMA block processing for estimating stationary low-frequency electromechanical modes of power systems

机译:ARMA块处理用于估算静止低频机电系统的电力系统

获取原文
获取原文并翻译 | 示例

摘要

Accurate knowledge of low-frequency electromechanical modes in power systems gives vital information about the stability of the system. Current techniques for estimating electromechanical modes are computationally intensive and rely on complex system models. This research complements model-based approaches and uses measurement-based techniques. This paper discusses the development of an autoregressive moving average (ARMA) block-processing technique to estimate these low-frequency electromechanical modes from measured ambient power system data without requiring a disturbance. This technique is applied to simulated data containing a stationary low-frequency mode generated from a 19-machine test model. The frequency and damping factor of the estimated modes are compared with the actual modes for various block sizes. This technique is also applied to 35-min blocks of actual ambient power system data before and after a disturbance and compared to results from Prony analysis on the ringdown from the disturbance.
机译:功率系统中低频机电模式的准确知识为系统稳定提供了重要信息。用于估计机电模式的当前技术是计算密集的,依赖于复杂的系统模型。本研究补充了基于模型的方法,并使用基于测量的技术。本文讨论了自回归移动平均(ARMA)块处理技术的开发,从测量的环境动力系统数据估计这些低频机电模式而不需要干扰。该技术应用于包含从19机器测试模型产生的固定低频模式的模拟数据。将估计模式的频率和阻尼因子与各种块尺寸的实际模式进行比较。该技术也应用于在干扰之前和之后的35分钟的实际环境电力系统数据块,并与从干扰的敲打上的Proy分析结果相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号