首页> 外文期刊>IEEE Transactions on Power Systems >Data-Driven Regulation Reserve Capacity Determination Based on Bayes Theorem
【24h】

Data-Driven Regulation Reserve Capacity Determination Based on Bayes Theorem

机译:基于贝叶斯定理的数据驱动规则储备容量确定

获取原文
获取原文并翻译 | 示例

摘要

To counteract the real-time power fluctuations and maintain the performance of the frequency regulation, it is essential for the system operator to properly determine the frequency regulation reserve capacities (FRRCs). This letter develops a new data-driven method to quantify the FRRCs considering the time-varying wind, solar power outputs, and load power variations. This method mainly includes three steps: first, the concerned power variation ranges are forecasted by using the extreme learning machine-based interval prediction method; second, an adequacy criterion is proposed based on the conditional probability of reaching a certain frequency control standard under a given FRRC and the forecasted power variation ranges; and third, the minimum FRRC satisfying the proposed criterion is determined as the FRRC requirement. To make the high-dimensional probability calculation tractable, Bayes theorem is adopted to simplify the original conditional probability function. The simulation results show that the proposed method can reduce the FRRC and improve the frequency control performance compared with the actual historical data.
机译:为了抵消实时功率波动并维持频率调节的性能,对于系统运营商而言,正确确定频率调节备用容量(FRRC)至关重要。这封信提出了一种新的数据驱动方法,以考虑风时变化,太阳能输出和负载功率变化来量化FRRC。该方法主要包括三个步骤:首先,使用基于极限学习机的区间预测方法预测相关的功率变化范围;其次,根据在给定的FRRC下达到某个频率控制标准的条件概率和预测的功率变化范围,提出一个充分性标准。第三,确定满足建议标准的最小FRRC作为FRRC要求。为了使高维概率计算易于处理,采用贝叶斯定理简化了原始条件概率函数。仿真结果表明,与实际的历史数据相比,该方法可以降低FRRC,提高频率控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号