首页> 外文期刊>Power Systems, IEEE Transactions on >Algorithmic Bidding for Virtual Trading in Electricity Markets
【24h】

Algorithmic Bidding for Virtual Trading in Electricity Markets

机译:电力市场虚拟交易的算法竞价

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of optimal bidding for virtual trading in two-settlement electricity markets. A virtual trader aims to arbitrage on differences between day-ahead and real-time market prices that are random and unknown to market participants. An online learning algorithm is proposed to maximize the cumulative payoff over a finite number of trading sessions by allocating the trader's budget among his bids for$K$options in each session. It is shown that the expected payoff of the proposed algorithm converges, with an almost optimal convergence rate, to the expected payoff of the global optimal corresponding to the case when the underlying price distribution is known. The proposed algorithm is also generalized for trading strategies with a risk measure. By using both cumulative payoff and Sharpe ratio as performance metrics, evaluations were performed based on the historical data spanning ten year period of NYISO and PJM markets. It was shown that the proposed strategy outperforms standard benchmarks and the S&P 500 index over the same period.
机译:我们考虑了两结算电力市场中虚拟交易的最优竞标问题。虚拟交易者旨在套现市场参与者随机且未知的日间和实时市场价格之间的差异。提出了一种在线学习算法,可以通过在交易者的预算中分配交易者的预算,从而在一定数量的交易时段内最大程度地累积收益, n $ K $ < / inline-formula> n选项。结果表明,与已知基础价格分布的情况相对应,所提出算法的预期收益以几乎最优的收敛速度收敛到全局最优的预期收益。所提出的算法还可以推广到具有风险度量的交易策略。通过使用累积回报率和夏普比率作为绩效指标,根据跨过NYISO和PJM市场十年的历史数据进行了评估。结果表明,所提出的策略在同一时期的表现优于标准基准和标准普尔500指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号