首页> 外文期刊>IEEE Transactions on Power Systems >Very Short-Term Wind Power Prediction Interval Framework via Bi-Level Optimization and Novel Convex Cost Function
【24h】

Very Short-Term Wind Power Prediction Interval Framework via Bi-Level Optimization and Novel Convex Cost Function

机译:通过双层优化和新颖的凸成本函数的短期风电预测区间框架

获取原文
获取原文并翻译 | 示例

摘要

Substantial challenges in power systems operation and control as a result of the intermittent and stochastic nature of wind power generation can be significantly alleviated by proficient very short-term wind power prediction interval (WPPI) models. In WPPI models, minimization of cost functions is conducted to train prediction engines and consequently tune their parameters. The prevalent cost functions of prediction engines in WPPI models are mainly non-differentiable and non-convex, and therefore the training process becomes problematic. To transcend such a crucial barrier, this paper addresses a new very short-term WPPI framework based on a bi-level formulation and benefiting from a differentiable and convex cost function. The prediction engine is trained by classical global optimization of the cost function in the lower-level problem, while hyperparameters that control the quality of the WPPIs are injected thereto fromthe upper-level problem. The hyperparameters can be tuned such that the most useful WPPIs are constructed from the lower-level problem depending on the power system operator's preferences. Lessening the need to heuristically tune a large number of prediction engine parameters is the foremost contribution of this work to the WPPI literature. The superior performance of the proposed WPPI is verified in the multistep ahead prediction of real wind power generation data in comparison to well-tailored benchmark models.
机译:通过熟练的极短期风电预测间隔(WPPI)模型,可以显着缓解由于风力发电的间歇性和随机性而导致的电力系统运行和控制中的重大挑战。在WPPI模型中,成本函数的最小化是为了训练预测引擎并因此调整其参数。 WPPI模型中预测引擎的普遍成本函数主要是不可微和非凸的,因此训练过程会出现问题。为了克服这一关键障碍,本文提出了一个新的非常短期的WPPI框架,该框架基于两级表述并受益于可微的凸成本函数。通过对下层问题的成本函数进行经典的全局优化来训练预测引擎,而从上层问题中注入控制WPPI的质量的超参数。可以对超参数进行调整,以便根据电力系统运营商的偏好,根据较低级别的问题构建最有用的WPPI。减少启发式调整大量预测引擎参数的需求是这项工作对WPPI文献的最大贡献。与精心设计的基准模型相比,在实际风力发电数据的多步提前预测中验证了所提出的WPPI的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号