首页> 外文期刊>Power Systems, IEEE Transactions on >Generating Joint Scenarios for Renewable Generation: The Case for Non-Gaussian Models With Time-Varying Parameters
【24h】

Generating Joint Scenarios for Renewable Generation: The Case for Non-Gaussian Models With Time-Varying Parameters

机译:生成可再生发电的联合方案:带时变参数的非高斯模型

获取原文
获取原文并翻译 | 示例

摘要

The development of medium-/long-term studies for power-system operation and planning under the uncertainty of renewable generation is a key challenge faced by power-system agents worldwide. There is a vast literature on stochastic optimization models devoted to addressing the relevant issues on both operation and planning applications. Notwithstanding, few papers focus on addressing the gaps within the subject of joint scenario generation despite the high sensibility of stochastic optimization models with regard to their input scenarios. Characterizing wind power generation (WPG) stochastic processes to devise time- and spatial-dependent scenarios, based on simulation procedures, for time horizons of one to a few years is a difficult task. Multiple regimes and non-Gaussian distributions are two of the main issues that significantly change the risk described through generated scenarios. In this paper, a new methodology to simulate long-term joint scenarios for multivariate WPG time series is presented. The proposed framework, known as generalized auto regressive score models, is derived based on a new class of time-series model with time-varying parameters and an arbitrary non-Gaussian distribution. Our case study shows, based on real data from the Brazilian power system, that the proposed methodology is capable of producing scenarios with coherent temporal and spatial dependence that are needed in power system studies.
机译:在可再生能源发电的不确定性下,对电力系统运行和规划进行中/长期研究的发展是全球电力系统代理商所面临的主要挑战。关于随机优化模型的大量文献致力于解决运营和计划应用程序中的相关问题。尽管如此,尽管随机优化模型对输入方案的敏感性很高,但很少有论文专注于解决联合方案生成主题中的空白。表征风能发电(WPG)随机过程以基于仿真程序设计时间和空间依赖情景,时间范围为一到几年,这是一项艰巨的任务。多种制度和非高斯分布是严重改变通过生成的场景描述的风险的两个主要问题。本文提出了一种新的方法来模拟多元WPG时间序列的长期联合情景。基于具有时变参数和任意非高斯分布的新型时间序列模型,推导了所提出的框架,称为广义自回归评分模型。我们的案例研究表明,基于来自巴西电力系统的实际数据,所提出的方法能够产生电力系统研究所需的具有一致的时间和空间依赖性的方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号