首页> 外文期刊>IEEE Transactions on Power Systems >A hybrid artificial neural network-dynamic programming approach for feeder capacitor scheduling
【24h】

A hybrid artificial neural network-dynamic programming approach for feeder capacitor scheduling

机译:馈线电容器调度的混合人工神经网络-动态规划方法

获取原文
获取原文并翻译 | 示例

摘要

A hybrid artificial neural network (ANN) dynamic programming (DP) method for optimal feeder capacitor scheduling is presented in this paper. To overcome the time-consuming problem of full dynamic programming method, a strategy of ANN assisted partial DP is proposed. In this method, the DP procedures are performed on historical load data offline. The results are managed and valuable knowledge is extracted by using cluster algorithms. By the assistance of the extracted knowledge, a partial DP of reduced size is then performed online to give the optimal schedule for the forecasted load. Two types of clustering algorithms, hard clustering by Euclidean algorithm and soft clustering by an unsupervised learning neural network, are studied and compared in the paper. The effectiveness of the proposed algorithm is demonstrated by a typical feeder in Taipei City with its 365 days' load records. It is found that execution time of scheduling is highly reduced, while the cost is almost the same as the optimal one derived from full DP.
机译:提出了一种用于优化馈线电容器调度的混合人工神经网络(ANN)动态规划(DP)方法。为解决全动态规划方法的耗时问题,提出了一种基于神经网络的局部DP辅助策略。在这种方法中,DP过程将离线历史加载数据执行。通过使用聚类算法管理结果并提取有价值的知识。借助所提取的知识,可以在线执行尺寸减小的部分DP,以提供预测负荷的最佳计划。本文研究并比较了两种聚类算法:欧氏算法的硬聚类和无监督学习神经网络的软聚类。台北市的典型馈线具有365天的负载记录,证明了该算法的有效性。发现调度的执行时间大大减少,而成本几乎与从全DP派生的最优成本相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号