首页> 外文期刊>IEEE Transactions on Power Systems >Algorithms for efficient vectorization of repeated sparse power system network computations
【24h】

Algorithms for efficient vectorization of repeated sparse power system network computations

机译:重复稀疏电力系统网络计算的有效矢量化算法

获取原文
获取原文并翻译 | 示例

摘要

Standard sparsity-based algorithms used in power system applications need to be restructured for efficient vectorization due to the extremely short vectors processed. Further, intrinsic architectural features of vector computers such as chaining and sectioning should also be exploited for utmost performance. This paper presents novel data storage schemes and vectorization algorithms that resolve the recurrence problem, exploit chaining and minimize the number of indirect element selections in the repeated solution of sparse linear system of equations widely encountered in various power system problems. The proposed schemes are also applied and experimented for the vectorization of power mismatch calculations arising in the solution phase of fast decoupled load flow which involves typical repeated sparse power network computations. The relative performances of the proposed and existing vectorization schemes are evaluated, both theoretically and experimentally on an IBM 3090/VF computer.
机译:由于处理的向量极短,因此需要重组用于电力系统应用的基于稀疏性的标准算法,以实现有效的矢量化。此外,还应利用矢量计算机的固有体系结构特征(例如链接和分段)以实现最大性能。本文提出了新颖的数据存储方案和矢量化算法,可以解决循环问题,利用链接并在各种电力系统问题中普遍遇到的稀疏线性方程组的重复解决方案中最大程度地减少间接元素选择的次数。所提出的方案也用于在快速解耦潮流的求解阶段出现的功率失配计算的矢量化,并进行了实验,其中涉及典型的重复稀疏电网计算。理论上和实验上在IBM 3090 / VF计算机上评估了建议的和现有的矢量化方案的相对性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号