首页> 外文期刊>IEEE Transactions on Power Systems >On-line identification of synchronous machines using radial basis function neural networks
【24h】

On-line identification of synchronous machines using radial basis function neural networks

机译:基于径向基函数神经网络的同步电机在线辨识

获取原文
获取原文并翻译 | 示例

摘要

On-line identification of the synchronous machines using radial basis function neural network (RBFNN) is presented in this paper. The capability of the proposed identifier to capture the nonlinear operating characteristics of the synchronous machine is illustrated. The results of the proposed identifier performance due to square and uniformly distributed random variations in both mechanical torque and field voltage are compared with that obtained by time-domain simulations. Correlation-based model validity tests using residuals and inputs have been carried out to examine the validity of the proposed identifier. The results of these tests demonstrate the adequacy of the proposed identifier.
机译:本文提出了基于径向基函数神经网络(RBFNN)的同步电机在线辨识方法。说明了所提出的标识符捕获同步电机的非线性运行特性的能力。将由于机械转矩和励磁电压的平方和均匀分布的随机变化而导致的提议标识符性能的结果与时域仿真获得的结果进行了比较。已经使用残差和输入进行了基于相关性的模型有效性测试,以检验所提出标识符的有效性。这些测试的结果证明了所提出标识符的充分性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号