首页> 外文期刊>IEEE Transactions on Power Systems >The use of sliding spectral windows for parameter estimation inpower system disturbance monitoring
【24h】

The use of sliding spectral windows for parameter estimation inpower system disturbance monitoring

机译:滑动频谱窗口在电力系统扰动监测中的参数估计

获取原文
获取原文并翻译 | 示例

摘要

The monitoring of power systems after faults or disturbances is annimportant problem. These disturbances generally give rise to oscillatingnmodal components, which in a worst case scenario, can be exponentiallyngrowing sinusoids. The latter, if not detected and damped out, can posena serious threat to system reliability. It is thus necessary to monitornwhether any of these modes do exhibit exponential growth (rather thannthe more acceptable scenario of exponential decay). There are currentlyna number of approaches to predicting/monitoring disturbances in powernsystem networks. One approach is eigenanalysis, based on a linearizednmodeling of the power system. A more direct approach is spectralnanalysis of the signals recorded immediately after a fault orndisruption. For this latter approach both Prony's method andnconventional Fourier techniques have been used. This paper presents anFourier based algorithm for estimating the parameters of the oscillatingnmodes which arise after a system disruption. The algorithm is based onnthe sliding window method discussed by K. Poon et al. (see ibid.,np.1573-9, 1988) but has a number of innovations
机译:故障或干扰后的电力系统监控是一个重要的问题。这些扰动通常会引起振荡模态分量,在最坏的情况下,其可能呈指数增长正弦曲线。后者,如果不被发现和抑制,会严重威胁系统的可靠性。因此,有必要监视这些模式中的任何一种是否均表现出指数增长(而不是更可接受的指数衰减场景)。当前,有许多方法可以预测/监视动力系统网络中的干扰。一种方法是基于电力系统的线性化模型的特征分析。更直接的方法是对故障或中断后立即记录的信号进行频谱分析。对于后一种方法,已经使用了Prony方法和常规傅立叶技术。本文提出了一种基于傅立叶算法的算法,用于估计系统中断后出现的振荡模式的参数。该算法基于K. Poon等人讨论的滑动窗口方法。 (参见同上,np.1573-9,1988),但具有许多创新

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号