首页> 外文期刊>IEEE Transactions on Power Systems >A data mining approach for spatial modeling in small area loadforecast
【24h】

A data mining approach for spatial modeling in small area loadforecast

机译:小面积负荷预测中的空间建模数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

In a competitive power market, locations of future load growthnhave to be described with sufficient geographic precision to permitnvalid marketing strategy and siting of future T&D equipment. Smallnarea load forecast which provides information of future electric demandnthat includes spatial and temporal characteristics, is useful fornT&D and market planning. Domain experts for spatial load forecastnrequire long term practicing and are difficult to find. In order toncapture the meaningful associations between spatial data and the loadnchanges, and to provide a useful tool for spatial load forecast, a datanmining. technique based on a "Knowledge Discovery in Database (KDD)"nprocedure is proposed to determine automatically the preferentialn"scores" of land use changes. The proposed spatial modeling approach isnan exploratory data analysis, trying to discover useful patterns innspatial data that are not obvious to the data user and are useful in thenspatial load forecast
机译:在竞争激烈的电力市场中,必须以足够的地理精度描述未来负荷增长的位置,以允许有效的营销策略和未来输配电设备的选址。 Smallnarea负荷预测可提供包括空间和时间特征在内的未来电力需求信息,对于nT&D和市场计划非常有用。空间负荷预测领域专家需要长期实践,很难找到。为了捕获空间数据与负荷变化之间的有意义的关联,并为数据负荷预测提供有用的工具,以进行空间负荷预测。提出了一种基于“数据库中的知识发现(KDD)”过程的技术,以自动确定土地利用变化的优先“得分”。所提出的空间建模方法是探索性数据分析,试图发现空间数据中有用的模式,这些模式对于数据用户而言并不明显,并且在空间负荷预测中非常有用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号