首页> 外文期刊>IEEE Transactions on Plasma Science >Emission spectroscopic measurement of ammonia or mixture of nitrogen and hydrogen plasma in a direct-current arc jet generator with an expansion nozzle
【24h】

Emission spectroscopic measurement of ammonia or mixture of nitrogen and hydrogen plasma in a direct-current arc jet generator with an expansion nozzle

机译:带有扩展喷嘴的直流电弧射流发生器中氨或氮和氢等离子体混合物的发射光谱测量

获取原文
获取原文并翻译 | 示例

摘要

Spectroscopic measurement was carried out to understand the plasma features in a 10-kW-class water-cooled direct-current arcjet generator with a supersonic expansion nozzle. Ammonia or a mixture of nitrogen and hydrogen was used as the working gas. In the mixture of N/sub 2/+nH/sub 2/, the H/sub 2/ mole fraction n was varied from 0.5-3.0, in which a H/sub 2/ mole fraction of 3.0 corresponded to that of simulated ammonia. The discharge voltage and the vacuum tank pressure for N/sub 2/+3H/sub 2/ were higher than those for NH/sub 3/ at a constant discharge current and a constant input power, respectively. These characteristics agreed with those of H-atom electronic excitation temperatures in the constrictor of the nozzle throat. The NH/sub 3/ and N/sub 2/+3H/sub 2/ plasmas in the constrictor were expected to be nearly in a temperature-equilibrium condition. On the other hand, the plasmas in the expansion nozzle were in thermodynamical nonequilibrium state because the electron number densities rapidly decreased downstream. As a result, the H-atom excitation temperature and the N/sub 2/ rotational excitation temperature decreased from 7000-11000 K in the constrictor to about 4000 K and to 1000-1500 K, respectively, on the nozzle exit with mass flow rates of 0.1-0.2 g/s at input powers of 7-12 kW, although the NH rotational excitation temperature did not show a significant axial decrease.
机译:进行光谱测量以了解具有超音速膨胀喷嘴的10 kW级水冷直流电弧喷射发生器中的等离子体特征。使用氨或氮气和氢气的混合物作为工作气体。在N / sub 2 / + nH / sub 2 /的混合物中,H / sub 2 /摩尔分数n在0.5-3.0之间变化,其中H / sub 2 /摩尔分数3.0与模拟氨相当。在恒定的放电电流和恒定的输入功率下,N / sub 2 / + 3H / sub 2 /的放电电压和真空罐压力分别高于NH / sub 3 /的放电电压和真空罐压力。这些特性与喷嘴喉部的H原子电子激发温度的特性一致。收缩器中的NH / sub 3 /和N / sub 2 / + 3H / sub 2 /等离子体预计几乎处于温度平衡状态。另一方面,膨胀喷嘴中的等离子体处于热力学非平衡状态,因为下游的电子数密度迅速降低。结果,H原子的激发温度和N / sub 2 /旋转激发温度从收缩器中的7000-11000 K分别以质量流量降低到喷嘴出口处的4000 K和1000-1500K。尽管NH旋转激发温度没有显示出明显的轴向降低,但在7-12 kW的输入功率下,其最大运动强度却为0.1-0.2 g / s。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号