首页> 外文期刊>Plasma Science, IEEE Transactions on >Multidimensional Simulations of Magnetic Field Amplification and Electron Acceleration to Near-Energy Equipartition With Ions by a Mildly Relativistic Quasi-Parallel Plasma Collision
【24h】

Multidimensional Simulations of Magnetic Field Amplification and Electron Acceleration to Near-Energy Equipartition With Ions by a Mildly Relativistic Quasi-Parallel Plasma Collision

机译:相对论拟平行等离子体碰撞对磁场放大和电子加速至近能等价离子的多维模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The energetic electromagnetic eruptions observed during the prompt phase of gamma-ray bursts are attributed to synchrotron emissions. The internal shocks moving through the ultrarelativistic jet, which is ejected by an imploding supermassive star, are the likely source of this radiation. Synchrotron emissions at the observed strength require the simultaneous presence of powerful magnetic fields and highly relativistic electrons. We explore with 1-D and 3-D relativistic particle-in-cell simulations the transition layer of a shock, which evolves out of the collision of two plasma clouds at a speed 0.9$c$ and in the presence of a quasi-parallel magnetic field. The cloud densities vary by a factor of 10. The number densities of ions and electrons in each cloud, which have the mass ratio 250, are equal. The peak Lorentz factor of the electrons is determined in the 1-D simulation, as well as the orientation and the strength of the magnetic field at the boundary of the two colliding clouds. The relativistic masses of the electrons and ions close to the shock transition layer are comparable as in previous work. The 3-D simulation shows rapid and strong plasma filamentation behind the transient precursor. The magnetic field component orthogonal to the initial field direction is amplified in both simulations to values that exceed those expected from the shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this amplification. The simultaneous presence of highly relativistic electrons and strong magnetic fields will give rise to significant synchrotron emissions.
机译:在伽马射线爆发的迅速阶段观测到的高能电磁爆发归因于同步加速器发射。通过超相对论射流移动的内部震荡很可能是这种辐射的源,这是由一颗内爆的超大质量恒星喷出的。达到观测强度的同步辐射要求同时存在强大的磁场和高度相对论的电子。我们利用一维和三维相对论单元内粒子探索探索了冲击的过渡层,该过渡层是从两等离子云的碰撞中以0.9 $ c $的速度并在准平行存在的情况下演化而来的磁场。云的密度变化了10倍。质量比为250的每个云中的离子和电子的数量密度相等。在1-D模拟中确定电子的峰值洛伦兹因子,以及两个碰撞云的边界处的磁场的方向和强度。靠近冲击过渡层的电子和离子的相对论质量与以前的工作相当。 3-D模拟显示了瞬态前驱物后迅速而强烈的等离子体丝化。在两个模拟中,正交于初始磁场方向的磁场分量都被放大到一个值,该值比冲击压缩所期望的值大一个数量级。由于这种放大,成形冲击是准垂直的。高相对论性电子和强磁场的同时存在将引起大量的同步加速器发射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号