首页> 外文期刊>Plasma Science, IEEE Transactions on >Circuit Modeling of Nonlinear Lumped Element Transmission Lines Including Hybrid Lines
【24h】

Circuit Modeling of Nonlinear Lumped Element Transmission Lines Including Hybrid Lines

机译:包含混合线路的非线性集总单元传输线路的电路建模

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear lumped element transmission line (NLETL) that consists of an $LC$-ladder network can be used to convert a rectangular input pump pulse into a series of RF oscillations at the output. The discreteness of the $LC$ sections in the network contributes to the line dispersion while the nonlinearity of the $LC$ elements produces the nonlinear characteristics of the line. Both of these properties combine to produce wave trains of high frequency. This paper describes an NLETL circuit model that is used to simulate RF generation for a given input pump pulse and the experiments used to validate the simulated results. The circuit model is used to study a nonlinear capacitive line that comprises nonlinear $C$ but linear $L$ and a nonlinear inductive line that comprises nonlinear $L$ but linear $C$. Extensive and comprehensive parametric studies were carried out for the various NLETLs to understand the behavior and characteristics of these lines. Interesting observations were made, and explanations were given for their occurrence. A hybrid line that comprises both nonlinear elements $L$ and $C$ was also investigated using the circuit model with the goal of better matching to a resistive load. Simulations of the hybrid line indicate promising results.
机译:由$ LC $梯形网络组成的非线性集总元件传输线(NLETL)可用于将矩形输入泵浦脉冲转换为输出端的一系列RF振荡。网络中$ LC $部分的离散性会导致线分散,而$ LC $元素的非线性会导致线的非线性。这两个特性结合起来产生高频波列。本文介绍了一个NLETL电路模型,该模型用于模拟给定输入泵浦脉冲的RF生成,以及用于验证模拟结果的实验​​。该电路模型用于研究包含非线性$ C $但线性$ L $的非线性电容线和包含非线性$ L $但线性$ C $的非线性感应线。对各种NLETL进行了广泛而全面的参数研究,以了解这些管线的行为和特征。进行了有趣的观察,并对其发生给出了解释。还使用电路模型研究了同时包含非线性元件$ L $和$ C $的混合线路,目的是更好地匹配电阻负载。混合动力线的仿真表明了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号