首页> 外文期刊>IEEE Transactions on Plasma Science >Secondary Arcing Triggered by Hypervelocity Impacts on Solar Panel Rear-Side Cables With Defects—Comparison With Laser Impacts
【24h】

Secondary Arcing Triggered by Hypervelocity Impacts on Solar Panel Rear-Side Cables With Defects—Comparison With Laser Impacts

机译:超速撞击在太阳能电池板后侧电缆上产生缺陷而引起的二次电弧—与激光撞击的比较

获取原文
获取原文并翻译 | 示例

摘要

High-velocity impacts of micrometeoroids and debris are proven causes of solar arrays power loss. Many studies have been carried out in this domain with relatively large size particles, in the range of 1 mm, causing obviously large damages, but with a small probability of occurrence. This paper deals with the occurrence of secondary arcing triggered on solar panel rear face cables with defects (lack of dielectric envelope) by smaller particles, in the range of 20– (20 to 5 km/s), that is, with a probability of impact of several hundred of impacts by and by year both in low earth and geostationary orbits. Plasmas produced by high-velocity impacts on metallic (aluminum) and dielectric (Kapton) surfaces are characterized with a Langmuir triple probe (temperature, density, floating potential, and escape velocity). Secondary arcing tests on rear-side cables with cracks under high-velocity impacts are achieved using a solar array simulator with realistic in flight electrical conditions (120 to 3 A). Secondary arcing tests and plasma characterization are also carried out with laser impacts (0.2 J YAG laser) and compared with high-velocity impacts.
机译:微流星体和碎片的高速撞击已被证明是太阳能电池阵列功率损耗的原因。在此领域中,已经进行了许多研究,使用的是相对较大尺寸的颗粒(范围为1 mm),造成明显的损坏,但发生的可能性很小。本文探讨了在20-(20至5 km / s)范围内由较小颗粒引起的太阳能电池板背面电缆上引发的二次电弧的出现(缺陷(电介质包膜缺失))的可能性,即在低地球轨道和对地静止轨道上按年和按年都有数百次撞击的影响。高速撞击金属(铝)和电介质(Kapton)表面产生的等离子用Langmuir三重探针进行表征(温度,密度,浮动电势和逸出速度)。使用具有实际飞行电气条件(120至3 A)的太阳能电池阵列模拟器,可以对在高速冲击下有裂纹的后侧电缆进行二次电弧测试。还使用激光冲击(0.2 J YAG激光)进行了二次电弧测试和等离子体表征,并与高速冲击进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号