...
首页> 外文期刊>Planta >Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers
【24h】

Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers

机译:马铃薯(Solanum tuberosum L.)块茎中嘌呤的生物合成,挽救和降解情况

获取原文
获取原文并翻译 | 示例

摘要

To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.
机译:为了找到马铃薯(Solanum tuberosum L.)植物中嘌呤核糖和脱氧核糖核苷酸的一般代谢谱,我们研究了生长中的马铃薯块茎盘中各种14 C标记的前体的原位代谢命运。还研究了马铃薯块茎提取物中关键酶的活性。在从头进行嘌呤生物合成的中间体的前体中,[14 C]甲酸酯,[2-14 C]甘氨酸和[2-14 C] 5-氨基咪唑-4-羧酰胺核糖核苷代谢为嘌呤核苷酸,并掺入核酸中。圆盘对嘌呤核糖和脱氧核糖核苷的吸收速率为以下顺序:脱氧腺苷>腺苷>腺嘌呤>鸟嘌呤>鸟苷>脱氧鸟苷>肌苷>次黄嘌呤>黄嘌呤>黄嘌呤。嘌呤核糖核苷(腺苷和鸟苷)仅通过腺苷激酶(EC 2.7.1.20)和肌苷/鸟苷激酶(EC 2.7.1.73)和非特异性核苷磷酸转移酶(EC 2.7.1.77)挽救至核苷酸。肌苷/鸟苷激酶也可以挽救肌苷,但程度较轻。相反,没有黄嘌呤被挽救。脱氧腺苷激酶(EC 2.7.1.76)和脱氧鸟苷激酶(EC 2.7.1.113)和/或非特异性核苷磷酸转移酶(EC 2.7.1.77)可有效挽救脱氧腺苷和脱氧鸟苷。在嘌呤碱基中,腺嘌呤,鸟嘌呤和次黄嘌呤而不是黄嘌呤被抢救用于核苷酸合成。由于未检测到嘌呤核苷磷酸化酶(EC 2.4.2.1)活性,因此腺嘌呤磷酸核糖基转移酶(EC 2.4.2.7)和次黄嘌呤/鸟嘌呤磷酸核糖基转移酶(EC 2.4.2.8)似乎在挽救腺嘌呤,鸟嘌呤和次黄嘌呤中起主要作用。黄嘌呤通过尿囊素的氧化嘌呤降解途径被分解代谢。在其他生物中观察到的嘌呤代谢酶的活性,例如嘌呤核苷磷酸化酶(EC 2.4.2.1),黄嘌呤磷酸核糖基转移酶(EC 2.4.2.22),腺嘌呤脱氨酶(EC 3.5.4.2),腺苷脱氨酶(EC 3.5.4.4)马铃薯块茎提取物中未检出鸟嘌呤和鸟嘌呤脱氨酶(EC 3.5.4.3)。这些结果表明腺嘌呤和鸟嘌呤核苷酸的主要分解代谢途径分别是AMP→IMP→肌苷→次黄嘌呤→黄嘌呤和GMP→鸟苷→黄嘌呤→黄嘌呤途径。黄嘌呤和黄嘌呤之前的分解代谢物可以用于核苷酸生物合成的挽救途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号