...
首页> 外文期刊>Physical Review. B, Condensed Matter >Critical parameters of disordered nanocrystalline superconducting Chevrel-phase PbMo_6S_8
【24h】

Critical parameters of disordered nanocrystalline superconducting Chevrel-phase PbMo_6S_8

机译:无序纳米晶超导Chevrel相PbMo_6S_8的关键参数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Highly dense structurally disordered nanocrystalline bulk PbMo_6S_8 samples were fabricated by mechanical milling (MM) and hot isostatic pressing (HIP) at a pressure of 2000 bar and temperature of 800℃ for 8 h. In spite of the lower superconducting transition temperature (T_C~(0.95ρ_N)=12.3 K), nanocrystalline bulk PbMo_6S_8 samples were found to have significantly higher resistivity [ρ_N(16 K) = 680 μΩcm] and upper critical field [B_(C2)~(M=0) (0) = 110T] than conventional samples [T_C~(0.95ρ_N)=15.1 K, ρ_N,(16K)=80 μΩ cm, and B_(C2)~(M=0)(0) = 45 T, respectively; Phys. Rev. Lett. 91, 027002 (2003)]. The microstructural evolution during MM and HIP and the critical current density (J_C) are presented in this paper. J_C of the nanocrystalline bulk samples increased by a factor of more than 3 for high magnetic fields up to 12 T compared to the conventional sample. The scaling analysis is consistent with a grain-boundary pinning mechanism where F_p ≈{[B_(C2)~(J_C=0)(T)]~n/21κ~mμ_0d~*}b~p(1 -b)~q where n~2.35, m~2,p~1/2, q~2, κ is the Ginzburg-Landau constant (calculated from reversible magnetization measurements), and d~* is the grain size (derived from x-ray diffraction analysis). Despite the pinning framework, the underlying science that determines J_C challenges the standard flux pinning paradigm that separates intrinsic and extrinsic properties, since the disorder and micro-structure of these nanocrystalline materials are on a sufficiently short length scale as to increase both the density of (extrinsic) pinning sites and the (intrinsic) upper critical field.
机译:通过机械铣削(MM)和热等静压(HIP)在2000 bar的压力和800℃的温度下8h制备了高密度结构无序的纳米晶体PbMo_6S_8。尽管较低的超导转变温度(T_C〜(0.95ρ_N)= 12.3 K),发现纳米晶块状PbMo_6S_8样品具有明显更高的电阻率[ρ_N(16 K)= 680μΩcm]和较高的临界场[B_(C2) 〜(M = 0)(0)= 110T]比常规样品[T_C〜(0.95ρ_N)= 15.1 K,ρ_N,(16K)= 80μΩcm,B_(C2)〜(M = 0)(0)分别为45 T物理牧师91,027002(2003)]。本文介绍了MM和HIP过程中的微观结构演变以及临界电流密度(J_C)。与常规样品相比,对于高达12 T的高磁场,纳米晶体块状样品的J_C增加了3倍以上。尺度分析与晶粒边界钉扎机制一致,其中F_p≈{[[B_(C2)〜(J_C = 0)(T)]〜n /21κ〜mμ_0d〜*} b〜p(1-b)〜q其中n〜2.35,m〜2,p〜1/2,q〜2,κ是金茨堡-朗道常数(根据可逆磁化强度测量得出),d〜*是晶粒尺寸(由x射线衍射分析得出) )。尽管存在钉扎框架,但确定J_C的基础科学仍对标准的通量钉扎范式提出挑战,该范式将内在和外在特性分开,因为这些纳米晶体材料的无序和微观结构处于足够短的长度尺度上,以增加(外部)钉扎点和(内部)上部临界场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号