首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Universality classes of metal-insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity
【24h】

Universality classes of metal-insulator transitions in strongly correlated electron systems and mechanism of high-temperature superconductivity

机译:强相关电子系统中金属-绝缘体跃迁的通用性类别和高温超导性的机理

获取原文
获取原文并翻译 | 示例
           

摘要

We study three regimes of the Mott transitions characterized by classical, marginally quantum, and quantum. In the classical regime, the quantum degeneracy temperature is lower than the critical temperature of the Mott transition T_c, below which the first-order transition occurs. The quantum regime describes the T_c=0 boundary of the continuous transition. The marginal quantum region appears sandwiched by these two regimes. The classical transition is described by the Ising universality class. However, the Ginzburg-Landau-Wilson scheme breaks down when the quantum effects dominate. The marginal quantum critical region is categorized to an unusual universality class, where the order parameter exponent β, the susceptibility exponent γ, and the field exponent δ are given by β=d/2, γ=2-d/2, and δ=4/d, respectively, with d being the spatial dimensionality. It is shown that the transition is always at the upper critical dimension irrespective of the spatial dimensions. Therefore the mean-field exponents and the hyperscaling description become both valid at any dimension. The obtained universality classes agree with the recent experimental results on the Mott criticality in organic conductors such as κ-(ET)_2Cu[N(CN)_2]Cl and transition-metal compounds such as V_2O_3. The marginal quantum criticality is characterized by the critically enhanced electron-density fluctuations at small wave number. The characteristic energy scale of the density fluctuation extends to the order of the Mott gap in contrast to the spin and orbital fluctuation scales and causes various unusual properties. The mode coupling theory shows that the marginal quantum criticality further generates non-Fermi-liquid properties in the metallic side. The effects of the long-range Coulomb force in the filling-control Mott transition are also discussed. A mechanism of high-temperature superconductivity emerges from the density fluctuations at small wave number inherent in the marginal quantum criticality of the Mott transition. The mode coupling theory combined with the Eliashberg equation predicts the superconductivity of the d_(x~2-y~2) symmetry with the transition temperature of the correct order of magnitude for the realistic parameters for the cuprate superconductors. Experimental results on the electron differentiations established in the angle-resolved photoemission experiments are favorably compared with the present prediction. The tendency for the spatial inhomogeneity is a natural consequence of this criticality.
机译:我们研究了以经典,边际量子和量子为特征的莫特跃迁的三种状态。在经典状态下,量子简并温度低于莫特跃迁T_c的临界温度,在该临界温度以下发生一阶跃迁。量子态描述了连续跃迁的T_c = 0边界。边缘量子区似乎被这两种机制夹在中间。 Ising通用性类描述了经典转换。但是,当量子效应占优势时,Ginzburg-Landau-Wilson方案失败了。边际量子临界区域被归类为一个不寻常的通用性类别,其中阶数参数指数β,磁化率指数γ和场指数δ由β= d / 2,γ= 2-d / 2和δ=分别为4 / d,其中d为空间维数。结果表明,过渡空间始终处于较高的临界尺寸,而与空间尺寸无关。因此,平均场指数和超比例描述在任何维度上都变得有效。所获得的通用性类别与最近关于有机导体(例如κ-(ET)_2Cu [N(CN)_2] Cl)和过渡金属化合物(例如V_2O_3)中的Mott临界性的实验结果一致。边际量子临界性的特征在于在小波数下临界电子密度的增加。与自旋和轨道波动尺度相反,密度波动的特征能尺度扩展到莫特间隙的数量级,并引起各种异常性质。模耦合理论表明,边际量子临界进一步在金属侧产生非费米液体性质。还讨论了远程库仑力在填充控制莫特跃迁中的作用。莫特跃迁边缘量子临界所固有的小波数下的密度波动产生了高温超导机制。模态耦合理论与Eliashberg方程相结合,可以预测d_(x〜2-y〜2)对称性的超导性,并且对于铜酸盐超导体的实际参数,过渡温度具有正确数量级的过渡温度。将在角度分辨光发射实验中建立的电子微分的实验结果与目前的预测进行了比较。空间不均匀的趋势是这种临界的自然结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号