...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties
【24h】

Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties

机译:超纳米晶金刚石表面的表面化学和键构型及其对纳米摩擦学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-Vnanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photo-electron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO_2 after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp~2 fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp~2 fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2±2 vs 826±186 mJ/m~2, respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2±0.4 mJ/m~2, at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the surface chemistry and nanoscale friction. The proposed mechanism, supported by the detailed surface spectroscopic analysis, is the elimination of reactive (e.g., C~* —), polar (e.g., C=O), and π-bonded (C=C) surface groups, which are replaced by fully saturated, hydrogen-terminated surface bonds to produce an inert surface that interacts minimally with the contacting counterface.
机译:我们对超纳米晶金刚石(UNCD)表面的表面组成和纳米摩擦学进行了全面的研究,包括薄膜成核对这些性能的影响。我们描述了一种方法来表征薄膜的底面,这是通过对底层基板的牺牲蚀刻所揭示的。这使得能够研究由膜的成核和初始生长产生的形态和组成,以及表征与包括微伏安机电系统在内的应用相关的纳米摩擦学特性。我们使用基于同步加速器的X射线吸收近边缘结构光谱研究膜的顶面和底面的表面化学,键合构型和纳米摩擦学特性,以确定碳原子的键合状态,X射线光电子光谱法确定表面化学成分,俄歇电子光谱法进一步验证其成分和键合构型,并通过定量原子力显微镜研究纳米级形貌和纳米摩擦学性质。在用爆轰合成的纳米金刚石粉末对表面进行机械抛光之后,在含有额外纳米金刚石粉末的甲醇溶液中进行超声处理,然后在SiO_2上生长薄膜。蚀刻后的底面的sp〜2分数,形态和化学性质与顶面不同,表现出更高的sp〜2分数,一些氧化碳和更平滑的形态。金刚石纳米尖端与蚀刻后的UNCD底面之间的纳米级单粗糙性粘附力远低于硅-硅界面(分别为59.2±2对826±186 mJ / m〜2)。在范德华相互作用的水平上,与最近的从头算相一致,暴露于原子氢下可将纳米级粘附力大大降低至10.2±0.4 mJ / m〜2。摩擦也大大降低,这表明表面化学性质和纳米级摩擦之间存在直接联系。在详细的表面光谱分析的支持下,所提出的机理是消除了被取代的反应性(例如C〜*-),极性(例如C = O)和π键(C = C)表面基团通过完全饱和的,以氢为末端的表面键合,可形成惰性表面,该惰性表面与接触的对接面相互作用最小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号