...
首页> 外文期刊>Physical review >First-principles investigation of pentagonal and hexagonal core-shell silicon nanowires with various core compositions
【24h】

First-principles investigation of pentagonal and hexagonal core-shell silicon nanowires with various core compositions

机译:具有不同芯组成的五边形和六边形核壳硅纳米线的第一性原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

Properties of various core-shell silicon nanowires are investigated by extensive first-principles calculations on the geometric optimization as well as electronic band structures of the nanowires by using pseudopotential plane-wave method based on the density-functional theory. We show that different geometrical structures of silicon nanowires with various core compositions, formed by stacking of atomic polygons with pentagonal or hexagonal cross sections perpendicular to the wire axis, can be stabilized by doping with various types of semiconductor (Si, Ge), nonmetal (C), simple metal (Al), and transition metal (TM), 3d (Ti, Cr, Fe, Co, Ni, Cu), 4d (Nb, Mo, Pd, Ag), and 5d (Ta, W, Pt, Au), core atoms. Dopant atoms are fastened to a linear chain perpendicular to the planes of Si-shell atoms and are located through the center of planes. According to the stability and energetics analysis of core-shell Si nanowires, the eclipsed pentagonal and hexagonal structures are energetically more stable than the staggered ones. Electronic band structure calculations show that the pentagonal and hexagonal Si-shell nanowires doped with various different types of core atoms exhibit metallic behavior. Magnetic ground state is checked by means of spin-polarized calculations for all of the wire structures. The eclipsed hexagonal structure of Si-shell nanowire doped with Fe atom at the core has highest local magnetic moment among the magnetic wire structures. Electronic properties based on band structures of Si-shell nanowires with different dopant elements are discussed to provide guidance to experimental efforts for silicon-based spintronic devices and other nanoelectronic applications.
机译:通过基于密度泛函理论的准势平面波方法,通过大量的关于几何优化以及纳米线的电子能带结构的第一性原理计算,研究了各种核壳硅纳米线的性能。我们表明,通过掺杂各种类型的半导体(Si,Ge),非金属(Si,Ge)可以稳定由具有垂直于线轴的五边形或六边形横截面的原子多边形堆叠而形成的具有各种核心成分的硅纳米线的不同几何结构。 C),简单金属(Al)和过渡金属(TM),3d(Ti,Cr,Fe,Co,Ni,Cu),4d(Nb,Mo,Pd,Ag)和5d(Ta,W,Pt (Au),核心原子。掺杂原子被固定在垂直于Si壳原子平面的线性链上,并穿过平面的中心。根据核-壳硅纳米线的稳定性和能量学分析,黯淡的五边形和六边形结构在能量上比交错结构更稳定。电子能带结构计算表明,掺杂有各种不同类型核心原子的五边形和六边形硅壳纳米线表现出金属行为。通过自旋极化计算对所有导线结构检查磁基态。在磁线结构中,以铁原子掺杂的硅壳纳米线的偏光六边形结构具有最高的局部磁矩。讨论了基于具有不同掺杂元素的Si-shell纳米线的能带结构的电子性质,可为基于硅的自旋电子器件和其他纳米电子应用的实验工作提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号