首页> 外文期刊>Physical review >Pseudospin-dependent scattering in carbon nanotubes
【24h】

Pseudospin-dependent scattering in carbon nanotubes

机译:碳纳米管中假纺丝依赖性散射

获取原文
获取原文并翻译 | 示例

摘要

The breaking of symmetry is the ground on which many physical phenomena are explained. This is important in particular for bipartite lattice structure as graphene and carbon nanotubes, where particle-hole and pseudo-spin are relevant symmetries. Here we investigate the role played by the defect-induced breaking of these symmetries in the electronic scattering properties of armchair single-walled carbon nanotubes. From Fourier transform of the local density of states we show that the active electron scattering channels depend on the conservation of the pseudo-spin. Further, we show that the lack of particle-hole symmetry is responsible for the pseudo-spin selection rules observed in several experiments. This symmetry breaking arises from the lattice reconstruction appearing at defect sites. Our analysis gives an intuitive way to understand the scattering properties of carbon nanotubes and can be employed to newly interpret several experiments on this subject. Further, it can be used to design devices such as pseudo-spin filter by opportune defect engineering.
机译:打破对称性是解释许多物理现象的基础。这对于像石墨烯和碳纳米管这样的二分晶格结构尤其重要,在这些结构中,粒子孔和伪自旋是相关的对称性。在这里,我们研究了由缺陷导致的这些对称性的破坏在扶手椅单壁碳纳米管的电子散射特性中所起的作用。从状态的局部密度的傅立叶变换,我们表明,有源电子散射通道取决于伪自旋的守恒。此外,我们表明缺乏粒子-孔对称性是造成在几个实验中观察到的伪自旋选择规则的原因。这种对称破坏是由于缺陷部位出现晶格重构而引起的。我们的分析提供了一种直观的方式来理解碳纳米管的散射特性,并可用于重新解释有关该主题的若干实验。此外,它可以用于通过适当的缺陷工程设计诸如伪自旋滤波器的设备。

著录项

  • 来源
    《Physical review》 |2011年第11期|p.358-362|共5页
  • 作者单位

    Fraunhofer IWM, Wohlerstrafie 11, D-79108 Freiburg, Germany;

    Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universitat, D-79104 Freiburg, Germany,Physikalisches Institut, Albert-Ludwigs-Universitat, D-79104 Freiburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号