首页> 外文期刊>Physical review >Ab initio continuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals
【24h】

Ab initio continuum model for the influence of local stress on cross-slip of screw dislocations in fcc metals

机译:从头开始连续谱模型,研究局部应力对fcc金属中螺钉位错的交叉滑动的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a model of cross-slip in face-centered cubic (fcc) metals based on an extension of the Peierls-Nabarro representation of the dislocation core. The dissociated core is described by a group of parametric fractional Volterra dislocations, subject to their mutual elastic interaction and a lattice-restoring force. The elastic interaction between them is computed from a nonsingular expression, while the lattice force is derived from the γ surface obtained directly from ab initio calculations. Using a network-based formulation of dislocation dynamics, the dislocation core structure is not restricted to be planar, and the activation energy is determined for a path where the core has three-dimensional equilibrium configurations. We show that the activation energy for cross-slip in Cu is 1.9 eV when the core is represented by only two Shockley partials, while this value converges to 1.43 eV when the core is distributed over a bundle of 20 Volterra partial fractional dislocations. The results of the model compare favorably with the experimental value of 1.15 ± 0.37 eV [J. Bonneville and B. Escaig, Acta Metall. 27, 1477 (1979)]. We also show that the cross-slip activation energy decreases significantly when the core is in a particular local stress field. Results are given for a representative uniform "Escaig" stress and for the nonuniform stress field at the head of a dislocation pileup. A local homogeneous stress field is found to result in a significant reduction of the cross-slip energy. Additionally, for a nonhomogeneous stress field at the head of a five-dislocation pileup compressed against a Lomer-Cottrell junction, the cross-slip energy is found to decrease to 0.62 eV. The relatively low values of the activation energy in local stress fields predicted by the proposed model suggest that cross-slip events are energetically more favorable in strained fcc crystals.
机译:我们基于位错核心的Peierls-Nabarro表示的扩展,开发了面心立方(fcc)金属的交叉滑动模型。离解核是由一组参数分数阶Volterra位错描述的,受其相互的弹性相互作用和晶格恢复力的影响。它们之间的弹性相互作用是根据一个非奇异的表达式计算的,而晶格力则是从一个从头算得到的γ表面推导出的。使用基于网络的位错动力学公式,位错核心结构不限于平面,并且为核心具有三维平衡构型的路径确定了活化能。我们显示,当核心仅由两个Shockley部分代表时,Cu中的横向滑动的激活能量为1.9 eV,而当核心分布在20 Volterra部分分数位错的束中时,该值收敛至1.43 eV。该模型的结果与1.15±0.37 eV的实验值相比具有优势[J. Bonneville和B.Escaig,金属学报。 27,1477(1979)]。我们还表明,当芯部处于特定的局部应力场时,滑移激活能显着降低。给出了具有代表性的均匀“ Escaig”应力和位错堆积顶部的非均匀应力场的结果。发现局部均质应力场导致横向滑移能量的显着降低。此外,对于五位错堆积物顶部的非均匀应力场,该五位错堆积物受Lomer-Cottrell结压缩,发现滑移能量降低至0.62 eV。所提出的模型预测的局部应力场中活化能的值相对较低,这表明在应变的fcc晶体中,横向滑动事件在能量上更为有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号