...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides
【24h】

Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides

机译:密度泛函理论计算中的近似值比较:二元氧化物的能级和结构

获取原文
获取原文并翻译 | 示例

摘要

High-throughput first-principles calculations based on density functional theory (DPT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include CU_2O, Ag_2O, MgO, ZnO, CdO, SnO, PbO, Al_2O_3, Ga_2O_3, In_2O_3, La_2O_3, Bi_2O_3, SiO_2, SnO_2, PbO_2, TiO_2, ZrO_2, HfO_2, V_2O_5, Nb_2O_5, Ta_2O_5, MoO_3, and WO_3. Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root-mean-square errors (RMSEs) are both 0.07 eV. In contrast, all GGAs including those with Hubbard U and van der Waals corrections give 0.1 to 0.2 eV MEs and at least 0.11 eV RMSEs. Phonon contributions of solid phases to the formation enthalpies and Gibbs free energies are estimated to be small at less than ~0.1 eV/atom within the quasiharmonic approximation. The same crystal structure appears as the lowest energy polymorph with different approximations in most of the investigated binary oxides. However, there are some systems where the choice of approximation significantly affects energy differences between polymorphs, or even the order of stability between phases. SCAN is the most reasonable regarding relative energies between polymorphs. The calculated transition pressure between polymorphs of ZnO and SnO_2 is closest to experimental values when PBED3, PBEsol (also PBED3+U and PBEsol+U for ZnO), and SCAN are employed. In summary, SCAN appears to be the best choice among the seven approximations based on the analysis of the energetics and crystal structure of binary oxides, while PBEsol is the best among the GGAs considered and shows a comparably good performance with SCAN for many cases. The use of PBEsol+U alongside PBEsol is also a reasonable choice, given that U corrections are required for several materials to qualitatively reproduce their electronic structures.
机译:基于密度泛函理论(DPT)的高通量第一性原理计算是面向数据的材料研究的强大工具。交换相关函数近似的选择至关重要,因为它会严重影响DFT计算的准确性。这项研究比较了七个近似值的性能,其中六个基于Perdew-Burke-Ernzerhof(PBE)广义梯度近似值(GGA),带有和不带有Hubbard U和van der Waals校正(PBE,PBE + U,PBED3,PBED3 + U) ,PBEsol和PBEsol + U),以及对基本物质和二元氧化物的能级和晶体结构进行严格约束和适当规范的(SCAN)meta-GGA。对于后者,仅考虑具有闭壳电子结构的那些,其示例包括CU_2O,Ag_2O,MgO,ZnO,CdO,SnO,PbO,Al_2O_3,Ga_2O_3,In_2O_3,La_2O_3,Bi_2O_3,SiO_2,SnO_2,PbO_2,TiO_2 ,ZrO_2,HfO_2,V_2O_5,Nb_2O_5,Ta_2O_5,MoO_3和WO_3。从无机晶体结构数据库(ICSD)中选择原型晶体结构,并使用阳离子取代制成一组现有的和假定的氧化物。提出了两个指标来量化计算过程中晶格和内部坐标松弛的程度。前者基于从松弛之前到松弛之后基础向量的变换矩阵的第二个不变式和行列式,而后者则是基于晶胞中原子内部坐标的偏移而得出的。 PBED3,PBEsol和SCAN可以很好地重现基本物质和氧化物的实验晶格参数,并且没有异常值。显然,PBEsol和SCAN可以预测低维结构的晶格参数与PBED3相当,尽管这两个功能没有明确地处理范德华相互作用。 SCAN给出的形成焓和吉布斯自由能最接近实验数据,平均误差(MEs)分别为0.01和-0.04 eV,均方根误差(RMSE)均为0.07 eV。相反,所有的GGA,包括经过Hubbard U和van der Waals校正的GGA,都给出0.1至0.2 eV的ME和至少0.11 eV的RMSE。据估计,在准谐波近似范围内,固相的声子对形成焓和吉布斯自由能的贡献很小,小于约0.1 eV /原子。在大多数研究的二元氧化物中,相同的晶体结构表现为最低能量的多晶型物,具有不同的近似值。但是,在某些系统中,近似的选择会显着影响多晶型之间的能量差,甚至会影响相之间的稳定性顺序。关于多晶型之间的相对能量,SCAN是最合理的。当使用PBED3,PBEsol(对于ZnO也是PBED3 + U和PBEsol + U)和SCAN时,计算得出的ZnO和SnO_2多晶型之间的转变压力最接近实验值。总之,根据对二元氧化物的能级和晶体结构的分析,SCAN似乎是七个近似中的最佳选择,而PBEsol在所考虑的GGA中是最佳的,并且在许多情况下显示出与SCAN相当的性能。鉴于将几种材料定性地重现其电子结构需要进行U校正,因此将PBEsol + U与PBEsol一起使用也是一个合理的选择。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第9期|094102.1-094102.24|共24页
  • 作者单位

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan,Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan,Center for Frontier Science, Chiba University, Chiba 263-8522, Japan;

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan;

    Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan,PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan;

    Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan,Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan,Elements Strategy Initiative for Structural Materials, Kyoto University, Kyoto 606-8501, Japan,Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan;

    Center for Materials Research by Information Integration, Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0047, Japan,Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan,Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号