首页> 外文期刊>Journal of chemical theory and computation: JCTC >Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory
【24h】

Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory

机译:包括密度泛函理论比较在内的第4和第6组过渡金属氧化物纳米团簇能量性能的基准计算

获取原文
获取原文并翻译 | 示例
           

摘要

The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)(n) (M = Ti, Zr, Hf, n = 1-4) and (MO3)(n) (M = Cr, Mo, W, n = 1-3) clusters have been benchmarked with 55 exchange-correlation density functional theory (DFT) functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than +/-10 kcal/mol for the NCEs and the EAs and less than +/-15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors, and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.
机译:已通过Feller-Peterson-Dixon(FPD)方法计算了第4组和第6组过渡金属氧化物(TMO)三聚体和四聚体的形成热和归一化聚集能(NCE)。通过FPD方法预测的形成热与先前从CCSD(T)/ aT水平的NCE导出的热没有太大区别,除了CrO3纳米团簇。使用PW91轨道而不是Hartree-Fock(HF)轨道获得了Cr3O9和Cr4O12的新的和改进的形成热。扩散函数对于预测准确的地层热量是必不可少的。氟化物亲和力(FAs)用CCSD(T)方法计算。 (MO2)(n)(M = Ti,Zr,Hf,n = 1-4)和(MO3)(n)的不同异构体,NCE,电子亲和力(EA)和FA的相对能(RE)( M = Cr,Mo,W,n = 1-3)簇已经用55种交换相关密度泛函理论(DFT)泛函进行了基准测试,包括纯净类型和混合类型。对于NCE和EA,DFT结果的绝对误差大多小于+/- 10 kcal / mol,对于FA小于+/- 15 kcal / mol。对于RE和NCE,混合功能通常比纯功能更好。两种类型的功能在预测EA和FA方面的性能是可比的。 B1B95和PBE1PBE官能团为大多数异构体提供了可靠的能量特性。远距离校正的纯功能通常会产生不良的FA。绝对误差的标准偏差始终接近平均误差,并且DFT误差的概率分布通常不是高斯(正态)的。误差分布的广度和最大概率取决于能量性质和异构体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号