首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Coherence-enhanced phase-dependent dissipation in long SNS Josephson junctions: Revealing Andreev bound state dynamics
【24h】

Coherence-enhanced phase-dependent dissipation in long SNS Josephson junctions: Revealing Andreev bound state dynamics

机译:长SNS约瑟夫森结中相干增强的相位相关耗散:揭示Andreev束缚态动力学

获取原文
获取原文并翻译 | 示例
       

摘要

One of the best known causes of dissipation in ac-driven quantum systems stems from photon absorption causing transitions between levels. Dissipation can also be caused by the retarded response to the time-dependent excitation, and in general gives insight into the system's relaxation times and mechanisms. Here we address the dissipation in a mesoseopic normal wire with superconducting contacts, that sustains a dissipationless supercurrent at zero frequency and that may therefore naively be expected to remain dissipationless at a frequency lower than the superconducting gap. We probe the high-frequency linear response of such a normal metal/superconductor (NS) ring to a time-dependent flux by coupling it to a highly sensitive multimode microwave resonator. Far from being the simple, dissipationless derivative of the supercurrent-versus-phase relation, the ring's ac susceptibility also displays a dissipativc component whose phase dependence is a signature of the dynamical processes occurring within the Andreev spectrum. We show how dissipation is driven by the competition between two mechanisms. The first is the relaxation of the Andreev level distribution function, while the second corresponds to microwave-induced transitions within the spectrum. Depending on the relative strength of those contributions, dissipation can be maximal at π. a phase at which the proximity-induced minigap closes, or can be maximal near n/2, a phase at which the dc supercurrent is maximal. We also find that the dissipalive response paradoxically increases at low temperature and can even exceed the normal-state conductance. The results are successfully confronted with theoretical predictions of the Kubo linear response and time-dependent Usadel equations, derived from the Bogoliubov-de Gennes Hamiltonian describing the SNS junction. These experiments thus demonstrate the power of the ac susceptibility measurement of individual hybrid mesoseopic systems in probing in a controlled way the quantum dynamics of Andreev bound states. By spanning different physical regimes, our experiments provide unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system, and reveal the associated relaxation times. This technique should be a tool of choice to investigate topological superconductivity and detect the topological protection of edge states.
机译:交流驱动量子系统中最著名的耗散原因之一是光子吸收引起能级之间的跃迁。耗散也可能是由对时间相关的激励的延迟响应引起的,并且通常可以深入了解系统的弛豫时间和机理。在这里,我们讨论具有超导触点的中视法线中的耗散,该耗散在零频率下维持无耗散超电流,因此可以天真地期望在低于超导间隙的频率下无耗散。我们通过将这种普通金属/超导体(NS)环耦合到高度灵敏的多模微波谐振器,来研究其随时间变化的通量的高频线性响应。环的交流磁化率远非简单的,无耗散的过电流与相位关系的导数,还显示了耗散分量,其相依性是在安德列夫谱中发生的动力学过程的标志。我们展示了两种机制之间的竞争如何驱动耗散。第一个是安德列夫能级分布函数的弛豫,而第二个则对应于微波在光谱内引起的跃迁。取决于这些贡献的相对强度,耗散可以在π处最大。接近感应的最小间隙闭合的相位,或者在n / 2附近可能最大,直流超电流最大的相位。我们还发现,耗散响应在低温下反常增加,甚至可以超过常态电导。从Bogoliubov-de Gennes Hamiltonian描述SNS交界处得出的Kubo线性响应和随时间变化的Usadel方程的理论预测成功地面对了这些结果。因此,这些实验证明了以控制方式探测Andreev束缚态的量子动力学时,单个混合中视系统的磁化率测量的能力。通过跨越不同的物理状态,我们的实验为孤立的量子相干系统的非弹性散射和光谱学提供了独特的途径,并揭示了相关的弛豫时间。该技术应成为研究拓扑超导性和检测边缘状态的拓扑保护的首选工具。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第18期|184505.1-184505.14|共14页
  • 作者单位

    LPS, Universite Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France;

    LPS, Universite Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France;

    LPS, Universite Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France;

    LPS, Universite Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France;

    LPS, Universite Paris-Sud, CNRS, UMR 8502, F-91405 Orsay Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号