首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications
【24h】

Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications

机译:用伪电势方法对电子设备进行全频带量子仿真:理论,实现和应用

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
机译:本文介绍了一种基于非平衡格林函数形式论和全频带经验伪势哈密顿量的量子输运建模方法的理论,实现和应用。我们在这里建议采用混合实空间/平面波的基础,与完全平面波的基础相比,可显着降低计算复杂度。为此,我们在量子约束,导线的自能量以及器件与导线之间的耦合的混合基础上提供了理论公式。在讨论了新仿真方法的理论和实现之后,我们报告了对各种电子设备(包括硅Esaki二极管,薄体硅场效应晶体管(FET)和锗隧道)进行完整,自洽的仿真结果。场效应管模拟晶体管具有与技术相关的几何特征,半导体膜厚度约为4 nm,沟道长度为10至17 nm。我们相信,新提出的形式主义也可以在基于从头算的哈密顿量的运输模型中找到应用,就像在密度泛函理论方法中所采用的那些一样。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2018年第12期|125310.1-125310.14|共14页
  • 作者

    M. G. Pala; D. Esseni;

  • 作者单位

    Centre de Nanosciences et de Nanotechnologies, Centre National de la Recherche Scientifique, Universite Paris-Sud, Universite Paris-Saclay, F-91405 Orsay, France;

    DPIA, University of Udine, Via delle Scienze 206,1-33100 Udine, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号