...
首页> 外文期刊>Physical mesomechanics >Theory of Superplasticity and Fatigue of Polycrystalline Materials Based on Nanomechanics of Fracturing and Failure
【24h】

Theory of Superplasticity and Fatigue of Polycrystalline Materials Based on Nanomechanics of Fracturing and Failure

机译:基于破裂和破坏的纳米力学的多晶材料超塑性和疲劳理论

获取原文
获取原文并翻译 | 示例
           

摘要

Fracture nanomechanics is the study of the interconnected process of the growth and birth of cracks and dislocations in the nanoscale. In this paper, it is applied to superplasticity and fatigue of metals and other polycrystalline materials in order to derive the basic equations describing some main features of these phenomena, namely, the fatigue threshold and the enormous neck-free superplastic elongation. It is shown that in most metals and alloys the fatigue threshold is greater than one per cent of the value of fracture toughness. Using the concepts of fracture nanomechanics, we study the superplastic deformation and fracturing of polycrystalline materials under uniaxial extension and calculate the neck-free elongation to failure in terms of strain rate, stress and temperature. Then, we determine the optimum strain rate of the maximum superplastic elongation in terms of temperature, creep index and other material constants. Further, we estimate the critical size o f ultrafine grains necessary to stop the growth of microcracks and open way to the superplastic flow, and find the superplastic deformation of grains, their maximum-possible elongation and the activation energy of superplastic state. Also, we introduce the dimensionless A-number in order to characterize the capability of different materials in yielding the superplastic flow. A t a very high elongation the alloying boundary of grains proves to be broken by a periodical system o f dead fractures of some definite period. It is shown that experimental results of the testing of the Pb-62% Sn eutectic alloy and Zn-22% A l eutectoid alloy at T = 473 K have substantially supported the theory of superplasticity advanced herewith.
机译:断裂纳米力学是对裂纹和位错在纳米尺度上生长和诞生的相互联系的过程的研究。本文将其应用于金属和其他多晶材料的超塑性和疲劳,以导出描述这些现象的一些主要特征的基本方程,即疲劳阈值和巨大的无颈超塑性伸长率。结果表明,在大多数金属和合金中,疲劳阈值大于断裂韧性值的百分之一。利用断裂纳米力学的概念,我们研究了多晶材料在单轴延伸下的超塑性变形和断裂,并根据应变率,应力和温度计算了无颈断裂的伸长率。然后,我们根据温度,蠕变指数和其他材料常数确定最大超塑性伸长率的最佳应变率。此外,我们估计了超细晶粒的临界尺寸,该临界尺寸对于阻止微裂纹的生长和超塑流的开放途径是必不可少的,并找到了晶粒的超塑性变形,其最大可能伸长率和超塑态的活化能。另外,我们引入无量纲A数以表征不同材料产生超塑性流的能力。一个非常高的伸长率,证明了晶粒的合金边界被某个确定周期的断口的周期性系统所破坏。结果表明,在T = 473 K时测试Pb-62%Sn共晶合金和Zn-22%Al共析合金的实验结果基本支持了超塑性理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号